
1

Early Network Intrusion Detection Enabled by
Attention Mechanisms and RNNs
Taki Eddine Toufik Djaidja∗, Bouziane Brik†, Sidi Mohammed Senouci∗,

Abdelwahab Boualouache‡ and Yacine Ghamri-Doudane§
∗ Université de Bourgogne DRIVE Lab, Nevers, France;

{taki-eddine.djaidja,sidi-mohammed.senouci}@u-bourgogne.fr
†Computer Science Department, College of Computing and Informatics, Sharjah University, UAE;

bbrik@sharjah.ac.ae
‡FSTM, University of Luxembourg, Luxembourg; abdelwahab.boualouache@uni.lu

§L3I Laboratory, Univ. La Rochelle, France; yacine.ghamri@univ-lr.fr

Abstract—Current flow-based Network Intrusion Detection
Systems (NIDSs) have the drawback of detecting attacks only
once the flow has ended, resulting in potential delays in attack
detection and increasing the risk of damage due to the infiltration
of a greater number of malicious packets. Moreover, the delay
provides attackers with an extended period of presence within
the network, enabling them to execute subsequent attacks. To
overcome this drawback, this work addresses the issue of early
flow classification in NIDSs that incorporates a Deep Learning
(DL) model. This model leverages Recurrent Neural Networks
(RNNs), including Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU), coupled with attention mechanisms. This
strategic combination allows the system to harness the inherent
sequential nature of packets within network flows, enhancing the
efficiency of early flow classification. We conducted experiments
on two up-to-date network intrusion datasets, namely CIC-
IDS2017 and 5G-NIDD. Our findings demonstrate the effec-
tiveness and accuracy of the proposed NIDS in classifying
network flows. Additionally,our approach showcases its efficacy
by promptly identifying and detecting attacks in their early stages
without the need for flow termination. This results in a reduction
in both the number of initial packets required for classification
and the time needed for detection.

Index Terms—Network Intrusion Detection Systems, Recurrent
neural networks, Attention Mechanisms, Early intrusion detec-
tion.

I. INTRODUCTION

Networking and telecommunication technologies, such as
the Internet and mobile networks, have become essential
components in numerous sectors, including transportation sys-
tems, smart cities, the Internet of Things (IoT), cyber-physical
systems, and social media. With the increasing reliance on
these technologies, especially after the introduction of 5G and
its potential to connect almost everything everywhere, it has
become crucial to research intelligent and effective mecha-
nisms that guarantee network availability, confidentiality, and
integrity. This is essential to ensure the security and privacy
of individuals and organizations using these networking and
communication technologies.

Network Intrusion Detection Systems (NIDSs) are an
essential component of modern security systems; their role
consists on detecting network-based attacks [1], [2]. NIDSs
are typically placed at the level of routers, switches, and

gateways, depending on the network topology. They analyze
incoming and outgoing traffic in real-time, looking for
patterns and behaviors that may indicate suspicious activities.
NIDSs trigger alerts so that the mitigation component takes
the appropriate countermeasures to prevent the intrusion.
NIDSs rely on network packets to detect intrusions. However,
those NIDSs that depend on deep packet inspection, where
the packet payload is analyzed, present two main drawbacks:
firstly, payload encryption makes it challenging to perform
effective analysis, and secondly, analyzing the payload takes
considerable time, resulting in significant computational
overhead, especially in modern networks with high traffic
volumes [3]. To address the aforementioned drawbacks,
current NIDSs utilize packet headers [4]. This approach
involves creating a sequence of exchanged packets between
a source and a destination, which is known as a network
flow. The flow (sequence) starts when the source sends its
first packet and has two termination conditions: either a
termination signal is sent in the packet, or a timeout is
reached [5]. The sequence is then aggregated into a single
data point that contains statistical information about the
packets, such as their arrival time, length, direction, and
flags. This method is more efficient, and its effectiveness in
detecting threats at lower TCP/IP stack levels is demonstrated
in the literature [6]. Several challenges have appeared in the
field of NIDSs, including detection rate, false alerts rate, and
zero days attacks [7]. Researchers are continuously exploring
new levers and architectures, especially Deep Learning (DL),
as it holds promising potential in addressing these challenges.
DL-based approaches guarantee high detection rates, low
false alarm rates, and the ability to detect zero-day attacks [8].

Flow-based NIDSs, referred to as conventional flow-based
NIDSs in this paper, focus on the classification task solely
upon meeting the flow termination condition. However, we
have identified drawbacks in this approach, particularly con-
cerning detection time, which we illustrate in the following
two scenarios: (i) Firstly, a flow may potentially reveal abnor-
mal traffic traces before its termination. In such cases, waiting
for the flow to terminate becomes unnecessary and results in
delayed detection. Given that we can infer the flow type earlier,

2

upon the appearance of an attack trace, waiting for termination
unnecessarily prolongs the detection process. (ii) Secondly, if
the last packet of a network flow is transmitted after a certain
duration, before reaching the timeout and without including a
termination signal, the NIDS overlooks the flow termination
and must wait until the timeout condition is met to initiate the
classification. This delay introduces a prolonged period before
taking appropriate action against the malicious user.

The scenarios described above highlight a critical challenge
that has not yet been thoroughly addressed in the literature.
This challenge concerns the efficacy of NIDSs in detecting
malicious traffic at the earliest possible stage. A NIDS must
detect suspicious traffic in its nascent form to prevent the
persistence of attackers and malicious traffic flows in the
network.

To contribute to the advancement of NIDSs and confront
the challenge of early attack detection, this paper introduces a
preemptive approach designed to minimize the time required
for identifying malicious traffic within the framework of
flow-based NIDSs. Our innovative methodology focuses on
the often-overlooked sequential nature of packets in network
flows. To accomplish this, we leverage modern DL techniques,
specifically Recurrent Neural Networks (RNN) and attention
mechanisms.

This study addresses the issue of early attack detection in
NIDSs, and as far as our knowledge extends, it is the first to
delve into this aspect. The key contributions of our work can
be summarized as follows:

• We propose a novel approach for flow-based NIDS. Our
method embraces the sequential nature of packets within
network flows and utilizes RNNs with attention mecha-
nisms— state-of-art DL models in sequence processing.

• We demonstrate the efficacy of our proposed model in
classification by employing up-to-date datasets.

• We conduct a comprehensive comparison to assess the
capability of our model in addressing the early detection
challenge of NIDSs. Our findings reveal two crucial
aspects. First, our model significantly reduces the num-
ber of initial packets required for attack classification.
Second, we showcase the early detection capabilities in
terms of the time needed for the detection process. Both
metrics are compared against the performance achievable
by conventional NIDSs.

The remainder of this paper is organized as follows. Sec-
tion II provides a comprehensive review of existing approaches
in the field of NIDSs. Section III presents the proposed ap-
proach, including the preparation of data, a detailed description
of the proposed Attention RNN model, and an explanation
of the training phase. In Section IV, the datasets utilized in
the research are presented. The classification performances of
the proposed model are also demonstrated. Additionally, this
section examines the early detection capabilities of the model.
Finally, Section V concludes the paper.

II. RELATED WORK

The problem of network intrusion detection has been a
topic of great interest to researchers, and its development is

still ongoing. Researchers constantly strive to develop new
techniques and architectures to address the challenges and
issues related to NIDSs.

Some NIDSs treat each network packet as a separate data
point that must be analyzed and classified. This analysis can
be based on the packet’s header or payload. Many existing
NIDSs methods use signatures, which typically involve testing
whether the packet matches a header, port, or payload attack
condition using regular expressions; please refer to [39] for
details about signatures-based NIDSs. Recent works use ad-
vanced techniques, especially DL-based approaches. [9] exper-
imented Machine Learning (ML) for a packet classification
task where the authors proposed a tool that parses packet
payloads into a fixed-size byte vector. The resulting payload
vector is then labeled and tested using several ML algorithms,
including Random Forest, K-Nearest Neighbors (KNN), Ad-
aboost, Multi-Layer Perceptron (MLP), and convolutional neu-
ral network (CNN). In the same context, [12] proposed a
novel approach for packet classification inspired by techniques
used in natural language processing. The approach utilizes an
embedding technique that learns a vector representation of the
payload. A neural network is trained to learn byte embedding
from the surrounding bytes in the same payload. The packet
payload bytes are then aggregated to obtain a payload em-
bedding for the packet, which is passed to a KNN model for
final packet classification. However, packet-based approaches
have several drawbacks. Firstly, payload encryption makes it
difficult to perform effective analysis. Secondly, analyzing the
payload takes considerable time. Moreover, these methods do
not take any contextual information into account, which means
they may fail to detect abnormal traffic that consists of a set of
packets where each packet separately is benign, but the whole
traffic is malicious.

To overcome these limitations, the new NIDSs are based on
network flows. A network flow is a continuous packet stream
representing a communication session between a source and
a destination. A network flow begins when the source sends
its first packet and terminates when one of two conditions is
met: either a termination signal is sent in the packet, such
as the FIN signal in TCP, or a timeout is reached. Usually,
the timeout period is set to 60 seconds [40]. Most flow-based
NIDSs utilize packet headers to extract relevant information.
The data extracted from packet headers is then consolidated
into a single data point containing statistical information about
the packets. This statistical information include the packet’s
arrival time, length, direction, and flags. The aggregated vector
may contain over 100 features. In the introduction section, we
referred to this type of NIDS as conventional NIDS.

In the literature, a variety of models and classifiers have
been developed for flow-based NIDSs, and recent research
has focused on utilizing advanced ML/DL techniques. ML
techniques are employed in various ways, including supervised
learning. In binary-class supervised NIDS, the classifier is
trained to learn and predict whether the flow is benign or
malicious [13], [15], [17]. In contrast, in multi-class supervised
IDS, the classifier is trained to predict the type of attack [18]–
[21]. Another approach is semi-supervised learning, where the
ML/DL model is trained only on benign traffic and is then

3

TABLE I
SUMMARY OF RELATED WORKS

Work
Approach

Time-series
Classification

ML/DL model Dataset Detection Time ConsPacket Flow Binary MulticlassHeaders Payload
[9] ✓ ✓ ✗ ✓ KNN, Adaboost, MLP/CNN [10], [11] packet arrival - NIDS Computing overhead/Payload encryption

- Does not take context into consideration[12] ✓ ✓ ✗ ✓ E+KNN
[13] ✓ ✗ ✓ LR/SVM/NB/RF [14]

flow termination

-Waiting for flow termination condition.

[15] ✓ ✗ ✓ DT [16]
[17] ✓ ✗ ✓ MLP [14]
[18] ✓ ✗ ✓ S-EA [14]
[19] ✓ ✗ ✓ MLP [14]
[20] ✓ ✗ ✓ CNN [10], [14]
[21] ✓ ✗ ✓ ✓ LR/DT/RF/ANN [11]
[22] ✓ ✗ ✓ AE/VAE [10]
[23] ✓ ✗ ✓ AE [10], [11], [14]
[24] ✓ ✗ ✓ Transformers [10], [25]

Misusing of sequence based models (RNNs/Transformers)

[26] ✓ ✗ ✓ CNN+BILSTM [10], [14]
[27] ✓ ✗ ✓ GRU [10], [14]
[28] ✓ ✗ ✓ Transformers + CNN [25]
[29] ✓ ✗ ✓ CNN+RNN [10]
[30] ✓ ✗ ✓ ✓ LSTM/biLSTM/GRU [14], [31], [32]
[33] ✓ ✗ ✓ LSTM [34]
[35] ✓ ✓ ✓ ✓ CNN+LSTM [10] - Payload analysis (encryption)

- Detection time not discussed[36] ✓ ✓ ✓ ✓ Transformers [10], [37]
[38] / / / ✓ ✓ Transformers [10] periodic (0.5s) - Can not identify the attacker/ and the number of attacks in the network
* E: Embeedings, LR: Logistic Regression, SVM: Support Vector Machines, AE: AutoEncoder, VAE: Variational AE, RF: Random Forest, DT: Decesion Trees

used to determine whether a given flow belongs to the benign
class. Any flow that does not fit this class is considered as an
attack [22], [23].

Conventional flow-based NIDSs rely on flow termination
conditions. As stated in the introduction, it is important to
note that these approaches can result in increased delays.
Moreover, when aggregating the network flow (sequence of
packets) into a single data point, there is a loss of the temporal
dimension in the sequence. This loss of temporal information
can impact the performances of the model [35], [36]. It is
worth noting that certain sequence-based DL models like
RNNs and transformers have been misused in some flow-
based NIDS works. Approaches discussed in [24], [26]–[30],
[33] treat the flow aggregated vector, which is a data point
with no temporal property, as a temporal sequence and feed
it into a sequence-based DL model. We strongly believe
that these approaches are conceptually flawed and should be
reconsidered.

Recent proposals for flow-based NIDSs have suggested
leveraging the sequence nature of network flows instead of
flow aggregation to enhance the detection performance. The
authors of [35] proposed a model that processes flow pack-
ets, including both the header and payload, in a 2D format
consisting of a sequence of packets and their corresponding
features. The model then passes this input to a CNN layer,
with the resulting output being fed into a LSTM layer for
flow classification. Additionally, [36] proposed a transformer-
based model for flow classification, which considers both the
header and payload of a packet. The payload is a vector
containing the frequency counts of its bytes. The sequence
of packets in the flow is fed to a transformer model for
classification. [35], [36] demonstrated the effectiveness of
using sequence-based DL models, with [36] in particular
highlighting the advantages of using transformers, which rely
on attention mechanisms to improve performance. However,
both approaches rely on packet payload, making them prone
to computational overhead and payload encryption issues. [38]
attempted to address the detection time issue and highlighted
that relying on termination timeouts for flows can cause
delays in the detection process. The authors have proposed a
framework that continuously monitors the state of the network

to determine if it is experiencing any anomalies. The proposed
approach periodically checks various network parameters to
identify potential deviations from expected network behavior.
The authors have considered 55 features, including statistics
related to the number and length of packets, as well as the
active flows in the network. The NIDS performs inference
every 0.5 seconds to detect anomalies in the behavior. The
framework leverages a transformer model, which performs
binary classification to determine whether the current network
behavior is normal or not. The model considers the network’s
previous states during the last 5 seconds. Through comparison
with other models, the authors have demonstrated the effec-
tiveness of their transformer-based approach. The proposed
framework is effective at detecting the presence of an attack
in the network, but it does not provide information about
the attacker’s identity or attack type. Moreover, the approach
cannot ascertain whether a singular or multiple attacks are
being executed, and it is unable to discern if a lone attacker
or multiple attackers are involved. These limitations can make
it challenging for the mitigation module to take the appropriate
actions.

Table I presents a comprehensive overview of the works dis-
cussed earlier. It includes essential details such as the ML/DL
models used, classification type (binary or multi-class), and
the datasets utilized. Furthermore, the table provides a concise
summary of the limitations associated with each of the works.

To overcome the aforementioned limitations, we introduce
in the following a flow-based NIDS that focuses on packet
headers and considers the sequential nature of network flows.
Our approach capitalizes on the benefits offered by attention
mechanisms, showcasing their effectiveness in early flow
classification.

III. METHODOLOGY OVERVIEW

Our approach involves the processing of network packets to
categorize network flows, which inherently exhibit a sequential
pattern. To effectively manage and comprehend this sequential
nature, we leverage RNNs and attention mechanisms. RNNs,
introduced in [41], stand out as powerful DL models, holding
significant potential for sequence classification tasks. To en-
hance their capabilities, we adopt subsequent variants, namely

4

Long Short-Term Memory (LSTM) [42] and Gated Recurrent
Unit (GRU) [43], which have been developed to improve
their overall effectiveness. These techniques prove particularly
advantageous for processing sequential data, excelling in cap-
turing patterns within a sequence.

Moreover, the incorporation of attention mechanisms en-
riches the model by providing additional contextual informa-
tion. These mechanisms selectively focus on specific parts of
the input sequence that are most relevant to the classification
task, as expounded in [44]. The synergy between RNNs and
attention mechanisms renders the proposed DL-based NIDS
model novel. This approach holds promise for early flow
detection, and we will delve deeper into this concept in the
subsequent paragraph.

In contrast to traditional approaches that aggregate network
flow data into a vector containing predefined statistical at-
tributes defined by experts, our method diverges by adopting
an unsupervised approach to embed the intrinsic characteristics
of network flows. Instead of explicitly defining attributes, our
deep learning model autonomously learns to represent the
evolving sequence, progressively refining its understanding
with each received packet. The RNN component is responsible
for learning this representation. Furthermore, the attention
mechanism creates a context vector that assigns a weight to
each packet in the input flow, reflecting its importance to the
current flow class.

Both outputs—the RNN output and the context vec-
tor, which together form the encoder module of our DL
model—are then fed into the final part: a decoder that predicts
the flow class.

The proposed DL model is designed to learn and classify
network flows. The encoder module aids in identifying the
packets or sequence within the flow that are most likely to
indicate an attack. In deployment, following the occurrence of
each packet, the encoder will perform a real-time encoding
of the flow, then passing it to the decoder. This approach
enables the early classification of network flows, allowing for
the detection of attacks as soon as traces of intrusion appear.

In this section, we provide an overview of our proposed
flow-based NIDS. We delve into the various components
and steps involved in its implementation. We cover the data
processing phase, the utilization of RNNs and attention mech-
anisms, as well as the DL-model training process.

A. Transformation of the network traffic data to network flows

Network security and monitoring data is collected and
stored in the form of pcap files. PCAP stands for Packet
Capture data, and it represents a file format used to store
network traffic data that has been captured by a network
sniffer tool. These pcap files serve as repositories for detailed
information about individual network packets, including their
headers and payloads. The pcap files are processed by various
tools to extract aggregated flows and convert them into CSV
format. Examples of such tools include Argus, NetFlow, Ci-
CFlowmeter. These tools are commonly employed in different
open-source datasets for network analysis. However, they pri-
marily focus on providing aggregated flow-level information

from pcap files. Although these tools are widely used in
the literature for flow-based NIDSs, they are not suitable for
NIDSs that rely on packets sequentiality within flows.

Given the importance of processing packet-level sequential-
ity for flow-based NIDSs, we have created a Python-based tool
called py flows. This tool segments the fully captured raw net-
work traffic files (provided in many open-source datasets), into
individual network traffic files. Each segmented file contains
the packet sequences associated with their respective flow. A
flow session is uniquely identified by the source IP address and
port, destination IP address and port, and the protocol used.
Traditionally, when flows surpass the timeout period, they are
subdivided into multiple sub-flows. However, in our work,
we take a different approach by preserving the entire session
flow without splitting it. The flows labelling is conducted in a
semi-manual manner. Open-source network intrusion datasets
provide metadata on how the datasets were generated. These
metadata include attacks information such as the attacker’s IP
address, the victim’s IP address, the type of attack, and the
time when the attack was initiated. The dataset’s metadata are
utilized for labeling the flow files generated by the py flows
tool. These labels serve the purpose of identifying, whether a
flow is tagged as benign or corresponds to a specific type of
attack. The dataset containing the labeled flows can be used
to train NIDS classifiers in a supervised or semi-supervised
manner.

B. Data preparation and pre-processing

The dataset generated from the previous step consists of a
collection of labeled flows in pcap format. In our approach,
we used ScaPy1 library to read the packets within each flow
and extract the header data. The extracted features are:

• Packet relative time: represents the arrival time of a
packet (pi) relative to the first packet (p1) in the flow.
This feature is expressed in seconds and calculated as
time(pi)−time(p1),

• Inter arrival time: refers to the time interval between the
arrival of a packet (pi) and its preceding packet (pi−1) in
the flow sequence,

• Packet direction: can be categorized as either forward
or backward. Forward (fwd) packets are the ones sent
by the flow initiator, determined by the source of the
first packet in the sequence. Conversely, backward (bwd)
packets refer to the ones sent by the destination,

• Destination port: the flow destination port,
• Packet length,
• Packet payload length,
• Time-To-Live (TTL): field in the IP header specifying the

number of routers that a packet can pass through before
it is discarded,

• Protocol: IP protocol, TCP or UDP,
• TCP flags: control bits found in the

TCP packet header. There are 8 flags
(PSH,SYN,RST,FIN,ACK,URG,ECE,CWR) and please
refer to [45] for details on TCP/IP networking.

1scapy.net

5

After extracting features from pcap files, the features are
stored in a csv file, where each file represents a labeled
sequence of the extracted features.

To prepare the data for the model training, we performed
encoding and normalization techniques on the features. We
used the z-score function to normalize the packet length and
packet payload length. Additionally, since the TTL field is
an integer ranging from 0 to 255, we normalized it using
the min-max function to scale it within the range of 0 to
1. Regarding the destination port, which is a categorical type
field, we decided to retain only the commonly used destination
ports found in the dataset, such as 22, 80, 8080, and 5353. It
is important to note that these ports may vary depending on
the testbed used to generate the data and the servers/services
deployed. After identifying the common ports, we proceeded
to encode them. As for the remaining ports that were not
part of the common set, we assigned them a default code.
Due to the variable lengths of packets in flow sequences, we
adopted a simplification approach by truncating the sequences
to a maximum length, denoted as MAX LENGTH (= 128).

At this stage, the data is prepared as input to the NIDS
model. The dataset consists of a collection of network flows,
where each flow is represented as a tuple < P, label >. In
this representation, P = {pi}/i ∈ [0, l] is the sequence of
packet headers belonging to the flow, l is the length of the
flow (number of packets) l = ||P ||/l ∈ [1,MAX LENGTH].
A packet header, denoted as pi, has the following structure:

pi :<rt, iat, fwd, bwd, d port, len p, len payload, ttl,
proto, fp, fs, fr, ff , fa, fu, fe, fc >

(rt), (iat), (len p), (len payload), (ttl) represents the packet’s
relative time, inter arrival time, packet length, payload length
and the time-to-live, respectively. fwd and bwd are boolean
variables that represent the packet’s direction, proto repre-
sents the type of IP protocol (TCP or UDP), The flags
fp, fs, fr, ff , fa, fu, fe and fc are boolean variables that indi-
cate control bits of the TCP packet header. If the packet is a
UDP packet, then these flags are set to false.

C. Deep Learning Model
This subsection provides a description of our DL model,

which consists of three key modules: a projection layer, an
encoder module using an RNN with attention mechanism,
and a decoder layer. The model’s architecture overview is
illustrated in Figure 1.

1) Projection Layer: The model operates by accepting a
sequence P as its input. To start, each individual input pi ∈ P
is projected through a feed forward (FF) layer. The FF layer is
followed by a dropout() function, serving as a regularization
technique that aim to prevent over-fitting. The dropout layer
randomly sets a fraction of the input tensor elements to zero,
during training with a specified dropout probability, denoted
as pdropout.

The primary objective of this projection is to map the inputs
to a higher-dimensional space, enabling richer representation
and capturing more complex patterns. The projected input (p̂i)
has the shape (d,), and is calculated as follows:

p̂i = dropout(W⊤
projector ∗ pi + b) (1)

Fig. 1. Attention-RNN Model Architecture.

Wprojector is a learnable weight matrix of shape (||pi||, d) and
bprojector is the bias vector of shape (d,).

2) AttnRNN Encoder: The purpose of this block is to
process the projected packets within the flow sequence and
encode it in the form of a latent representation, extracting
meaningful and important information from the flow sequence.
This representation will then be used by the decoder layer to
classify the input sequence effectively. Our encoder building
block consists of stacked RNN layers and an attention module,
which we detail in the subsequent paragraphs.

a) RNN block: RNNs are a type of artificial neural
network is designed to process sequential data [41]. The RNN
component, depicted in blue in Figure 1, maintains an internal
hidden state that enables it to retain and use information from
previous data points within a sequence.

The RNN cell accepts as input a projected input p̂i with
shape (d,). An RNN has a memory vector, known as the hidden
state at step (i), with shape (d,) and an initial value h0 of zero.
The formula for calculating the hidden state hi is as follows:

hi = tanh(W⊤ ∗ p̂i + bx + V ⊤ ∗ hi−1 + bh) (2)

Where W and V are learnable weight matrices of shapes (d, d).
bx and bh are the bias vectors of shape (d,). The function
tanh() is the hyperbolic tangent activation function.

An RNN model may include multiple layers of RNN cells.
In such a model, each layer (j, j ≤ m), except for the first
layer (j = 1), takes the output hj−1

i of the previous layer as
input.

In our contribution, we will utilize LSTM and GRU, which
are two advanced variants of RNNs designed to enhance
their performance, both approaches have been shown to be

6

effective in modeling long-term dependencies in sequential
data [42], [43]. While both LSTM and GRU rely on the
concept of hidden states, they also incorporate additional gates
and internal states to facilitate their functioning. For the sake
of paper clarity, we will not delve into the specifics of the
LSTM and GRU networks. We recommend referring to [42],
[43] for further details on these networks.

b) Attention module: Attention mechanisms are de-
signed to improve the performance of neural networks when
processing sequential data. When applied to a DL-based NIDS
model, attention mechanisms enable the DL model to assign
weights to the packets in the flow sequence, which helps to
selectively focus on the most important and relevant packets
during the classification process. The key idea behind attention
is to create a context vector (c) and provides it as an additional
input to the decoder. This context vector is calculated by com-
bining the hidden states of the encoder hm, which represent
the input flow sequence, with attention weights that determine
the importance of each hidden state hm

i . The context vector is
calculated as follows:

c = (α ∗ hm)⊤ (3)

α is the vector of the attention weights, it has the shape of
(1,l) where l is the flow sequence length, and its calculation
is shown in equation 4; hm is the hidden states of the RNN’s
last layer (m), hm = {hm

i /i ∈ [1, l]}. The context vector c
has the shape of (d,).

α = {softmax(αi)/i ∈ [1, l]} (4)

αi is the attention weight of the input pi, it quantifies its
importance and the relevance to predicted flow. There are
several methods for calculating attention weights in the context
of attention mechanisms. the commonly used methods include
content base attention, additive attention, location attention,
general attention, dot product attention, and scaled dot product
attention, refer to [46] for further details.

Our DL model utilizes additive attention, a technique that
was first introduced in [47]. This approach is robust in han-
dling sequences of varying lengths and provides interpretable
weight scores. The attention weights are parameterized by
a feed-forward (FF) layer, which is jointly trained with the
other components of the model. The attention weight αi of
the packet pi is calculated as follows:

αi = v⊤attn ∗ tanh(Wattn[h
m
l ;hm

i]⊤) (5)

Where vattn and Wattn are learnable weight matrices of
shapes (d, 2d) and (d,), respectively.

3) Decoder Layer: The last stage of the classification
process involves decoding the encoded representation of the
flow and inferring the flow’s class. The output of the encoder
building block, denoted as outencoder, is passed through a feed-
forward (FF) layer, the final output vector y is computed as
follows:

y = U⊤ ∗ outencoder + by (6)

Where U is a learnable weight matrix and by is the bias
vector.

In the case where the encoder does not include the attention
module, outencoder corresponds to the last hidden state hm

l of
the RNN. On the other case, if the encoder does have an
attention module, then outencoder is obtained by concatenating
the RNN’s output and the context vector (c), resulting in
outencoder = [hm

l , k]. Consequently, the shape of U is either
(d, k) or (2d, k), depending on the specific configuration of
the model, where k represents the number of classes.

The output vector y has a shape of (k,). Each element yz in
the output vector corresponds to the probability of the input
flow belonging to the corresponding class z. The predicted
class (predicted label), is determined by the NIDS based on
the index (z) that corresponds to the highest probability value
in the vector y.

D. DL Model Training

To train our neural network model, we used the back-
propagation algorithm to compute gradients and update the
model’s learnable parameters (Wprojector, bprojector, W j , V j ,
vattn, Wattn, U , by). We employed Stochastic Gradient Descent
(SGD) as our optimization algorithm. SGD adjusts the model’s
parameters by taking steps proportional to the learning rate
(lr) to control the updates. Cross-Entropy is used as a loss
function, which computes the cross-entropy loss between the
predicted output vector, y, and the target value, k. Additionally,
to address the issue of gradient explosion that can occur
in RNNs, we used the gradient clipping technique. Gradient
clipping promotes more stable updates and aids in preventing
the occurrence of infinity values in the gradients (pytorch
NaN).

Furthermore, we opted for mini-batch gradient descent,
where the training data is split into small batches of size (B),
and the model parameters are adjusted after processing each
batch. Given that the sequences in the dataset have different
lengths, we apply right-padding with zeros (p0 =

−→
0) within

each batch to align them with the maximum sequence length
present in that batch.

When computing the attention context vector, we apply a
masking technique to ignore the padded values (p0) in the flow
sequence. As a result, these padded points do not contribute
to the calculation of attention weights for the context vector.
Similarly, during the calculation of the loss, the padded values
are also disregarded.

The explained model training process is repeated for (E)
iterations.

IV. PERFORMANCES ANALYSIS

The following section delves into the performance analysis.
It begins by describing the datasets used and then proceeds
to illustrate the accuracy of the proposed DL models in
classifying network intrusions, along with their early network
intrusion detection capabilities.

A. Datasets

In order to showcase the strength and effectiveness of our
proposed approach, we selected two modern and up-to date

7

TABLE II
CIC-IDS2017 DATASET OVERVIEW

Label N. of packets N. of flows
Benign 5628248 248587 56.71%
Portscan 217530 107692 24.57%
DDoSLOIT 1265657 45168 10.30%
DoSHulk 2137508 14108 3.22%
DoSGoldenEye 106177 7574 1.73%
DoSSlowhttptest 37924 4212 0.96%
FTP-Patator 110256 3958 0.90%
DoSslowloris 45510 3835 0.87%
SSH-Patator 136073 2464 0.56%
Botnet 9862 735 0.17%

TABLE III
5G-NIDD DATASET OVERVIEW

Label N. of packets N. of flows
BENIGN 624154 75625 40.51%
Goldeneye 900385 27467 14.71%
TCPConnect 20341 20032 10.73%
UDPScan 15921 15890 8.51%
Torshammer 555319 15837 8.48%
SYNscan 10064 10014 5.36%
SYNScan 10054 10009 5.36%
SYNflood 26458 7566 4.05%
Slowloris 61916 4247 2.27%

intrusion detection datasets that provide full network packet
capture records and the corresponding labels. These datasets
are CIC-IDS2017 [10] and 5G-NIDD [48]. For both datasets,
we followed the process outlined in sub-section III-A to extract
the flow sequences from the packet capture records. The
labeling phase varies depending on the nature of the available
metadata. To prepare the labeled flow sequences for model
input, we proceeded to pre-process them as outlined in sub-
section III-B. Tables II and III present the labels, as well as
the number of packets in the original dataset and the extracted
flows for datasets CIC-IDS2017 and 5G-NIDD, respectively.
Each datset is divided into two sets, with 80% of the data
allocated for training and 20% allocated for testing

1) CIC-IDS2017: The CIC-IDS2017 dataset was proposed
by the Canadian Institute of Cybersecurity and has gained
significant popularity in the literature. It has been referenced
over 1000 times and is widely regarded as a reference dataset
in the field of network intrusion detection. The CIC-IDS2017
dataset encompasses both benign network traffic and various
types of attacks, such as Bot, DDoS, DoS, Patator, PortScan,
Web Attack, Heartbleed, and Infiltration. Due to the limited
representation of certain classes in the dataset, some of these
classes were excluded from this contribution. The website of
the dataset provides the necessary metadata for labeling, which
includes information such as the attack lunch time and IP
addresses of the attackers.

2) 5G-NIDD: The 5G Network Intrusion Dataset (5G-
NIDD) is a recently developed dataset designed for intrusion
detection in 5G networks. This dataset was generated using the
5G Test Network at the University of Oulu in Finland. The data
in this dataset is collected from the gateways deployed in two
base stations. It consists of various types of network traffic,
including benign traffic and different types of attacks: ICMP

(a) CIC-IDS2017 Dataset

(b) 5G-NIDD Dataset
Fig. 2. NIDS classification accuracy on test data

Flood, UDP Flood, SYN Flood, HTTP Flood, Slowrate DoS,
SYN Scan, TCP Connect Scan, and UDP Scan. The dataset
is organized in such a way that each attack is represented
by a separate (.pcap) file. Additionally, the IP address of
the attacker is (10.41.150.68). This metadata was utilized
to accurately label the extracted flow sequences within the
dataset.

B. Model Training Environment
We conducted the model training using the PyTorch frame-

work on a system with the following configuration: Intel Core
i7-10700, 32GB RAM, Nvidia RTX 3070. The training hyper-
parameters are summarized in Table IV.

TABLE IV
TRAINING HYPER-PARAMETERS

parameter value
DL model d 128

m 1
k 10 CIC-IDS2017/ 9 5G-NIDD
pdropout 0.2

lr 1 ∗ 10−3

Train

Optimiser SGD
Loss Cross-Entropy
B 32
E 10

C. Classification Accuracy
Figure 2a presents the test accuracy of various experimented

models, including LSTM, LSTM with Attention, GRU, and
GRU with Attention, on the CIC-IDS2017 dataset. The cor-
responding results for the 5G-NIDD dataset can be found in
Figure 2b. It is evident from both datasets that the models
achieved remarkably high accuracy rates (99%), which aligns
with previous findings in the literature. Furthermore, the
inclusion of attention mechanisms in the models resulted in
slight performance enhancements. The utilization of attention
context vector aided the learning process, contributing to these
improvements. The GRU with Attention model demonstrated
superior performance on the CIC-IDS2017 dataset, whereas
the LSTM with Attention model outperformed others on the
5G-NIDD dataset. Therefore, we will select these respective
models to conduct further evaluations on each dataset.

8

Fig. 3. Visualizing a network flow, its predicted class, and the attention weights.

D. Visualizing Attention
Figure 3 illustrates a flow sequence extracted from the CIC-

IDS2017 dataset. This particular flow is a TCP flow, with a
destination port of 80. It consists of nine (9) packets, and
each packet within the flow is represented by its header. The
total duration of the flow is 2.52 seconds. Notably, the LSTM
attention model accurately classified this flow, assigning it the
label DDosLOIT. The figure also depicts the attention weights
(α). These weights are used to calculate the context vector
(c) as shown in equation 3. The context vector (c) is then
concatenated with the LSTM output of the last packet (h9).
This concatenated representation is subsequently fed into the
decoder for the classification task.

We observe that the fifth packet (p5) possesses the highest
attention weight (α5) among all the packets in the flow.
This particular observation suggests that p5 significantly
influenced the decoder’s classification decision, leading to
the assignment of the DDosLOIT label. This finding suggests
that the presence of (p5) in the flow may contain crucial
information related to the underlying attack. Additionally,
the high attention weights observed in the flow, particularly
in the case of packet p5, can be interpreted as an indication
of the presence of hidden traces of an attack within these
specific packets.

Fig. 4. Step-by-step predicted class of a network flow

To further explore the notion that some packets in the flow
contains relevant traces of the produced labels, we employ a
step-by-step classification. For each packet in the flow, denoted
as pt where t ≤ l, we feed the hidden state (ht) and the context
vector (c) calculated using the attention weights (αj) up to the
t-th packet to the decoder y. This step-by-step classification
allows us to observe how the encoder progressively represents
the flow, and see how the decoder decodes this representation.

In this specific case, the observed flow analysis reveals
interesting behavior. At the beginning of the flow, the NIDS

initially classified the flow as Benign. The decoder indicated
that the traffic appeared to be normal with a high level of
confidence. This initial classification is expected since the first
three packets contain the TCP handshake exchange, making
it difficult to infer any attack solely from these packets.
Therefore, the benign classification is reasonable given the
limited information available in the initial packets. However,
a shift occurred when the 5th packet (p5) was observed. At
this point, the NIDS reevaluated the flow and reclassified it as
DDoS LOIT. Initially, the classification confidence was 89%,
indicating a fair level of certainty. As the analysis progressed
with each subsequent packet, the NIDS became increasingly
confident in its classification, reaching a high confidence level
of 99%.

These observations are consistent with our previous analysis
of attention weights. When examining the attention weights
across all the packets, we found that the 5th packet has
the highest attention weight, indicating its significance in
determining the label DDoSLOIT. The DL model successfully
generated this label by decoding the information utilizing
h5 and the context vector c obtained through the attention
mechanism, which incorporates the attention weights αj for
j ≤ 5.

Our model successfully detected the attack immediately
following the occurrence of packet (p5). Early detection of
the attack can be achieved if an alert is triggered after (p5).
As a result, the remaining four packets (from packet p6 to p9)
of the flow would not take place. Additionally, the analyzed
flow represents a TCP connection that is closed with a FIN
flag. Conventional flow-based NIDS can only analyze this flow
once it has been terminated, as indicated by the event (p9)
approximately 2.52 seconds after the initiation of the flow.
In contrast, our approach enables detection to be carried out
much earlier, precisely right after (p5), at approximately 0.001
seconds.

E. Early detection capabilities

The previous sub-section highlighted the early flow detec-
tion capabilities in comparison to conventional NIDS from
two perspectives: the requirement of fewer packets for attack
detection and the ability to classify flows at an earlier stage. In
this sub-section, we will generalize these observations based
on the experimental datasets.

1) Packets required for attack classification: Figure 5 pro-
vides an overview of the performance concerning sufficient
initial successive packets required for correct attack flow
classification. The x-axis represents the flow length, which
corresponds to the number of packets in each flow. Each

9

(a) CIC-IDS2017

(b) 5G-NIDD
Fig. 5. Number of initial packets required for correct attack classification.
AttnRNN (orange line), RNN (blue line), Conventional flow-based NIDS
(green line)

element on the x-axis groups flows of the same length together.
On the other hand, the y-axis represents the number of initial
packets required for the NIDS to detect an attack.

Conventional flow based IDS analyses the flow using all its
packets: hence, its graph is represented by the diagonal line.
The dashed lines correspond to the RNN model, while the
continuous line represents the RNN model with an attention
mechanism. The RNN model is GRU for CIC-IDS2017 (dis-
played in 5a), and LSTM for 5G-NIDD (shown in 5b), chosen
based on the accuracy metric illustrated in figure 2b.

In both scenarios, both the RNN and AttnRNN models
demonstrated the capability to achieve early classification.
The plots representing their respective results clearly illustrate
data points positioned below the diagonal line, indicating
their advancements compared to conventional flow-based IDS.
Moreover, the Attn RNN model demonstrated a slight im-
provement over the RNN model, highlighting the effectiveness
of attention mechanisms in enhancing performance.

In figure 5, the green-colored area represents the remaining
skipped packets, signifying the number of packets ignored due
to early attack detection. The green-colored packets represent
malicious traffic that can be prevented from occurring within
the network. The green area appears narrower in 5a compared
to 5b. This observation indicates that in the 5G-NIDD dataset,
attacks were more readily classified at an early stage, where
the attack patterns were relatively easier to identify.

Figure 6 highlights attack labels, and the sub-figures provide
further evidence that the proposed models (RNN and At-
tnRNN) can facilitate early detection, with certain attacks are
detected sooner than others. This observation suggests that the
characteristics of the attack and its corresponding traces vary
depending on the specific type of attack. An interesting attack
label worth noting is the udpscan. Our models demonstrate
similar performance to the conventional model in detecting this
type of attack. The udpscan attack, characterized by only two
packets, is passive in nature. Interestingly, the proposed models
cannot infer the attack based on the first packet, possibly due
to its resemblance to normal traffic behavior. Consequently,
both our RNN and attnRNN models require the two packets
of the flow to identify the udpscan attack.

2) Detection time: Figure 7 illustrates the detection time,
indicating the moment at which the model identifies a flow
as an attack. It is essential to note that the model inference
time has not been taken into account in this representation.
The x-axis represents flows as data points, while the bars
represent the duration of each flow. The green bars represent
the detection time of the conventional flow-based IDS, while
the orange bars represent the attnRNN model. Sub-Figure
7a showcases the performance results on the CIC-IDS2017
dataset, and Sub-Figure 7b displays the performance on the
5G-NIDD dataset.

The conventional flow-based NIDS performs detection once
the flow is terminated, which occurs under two conditions:
either when the FIN flag is sent or when the timeout period
(60s) is reached. In both datasets (represented by sub-figures
7a and 7b), AttnRNN demonstrates a reduced detection time.
This figure highlights the effectiveness of AttnRNN in reduc-
ing the required time (in seconds) to classify an attack flow.
Minimizing the attack detection time can effectively restrict
the duration of an attacker’s presence within the network.

Figure 8 displays the detection results for specific attack
labels from both datasets. While AttnRNN effectively reduces
the number of packets in the doshulk attack (shown in sub-
figure 7a) compared to conventional NIDS, both approaches
show similar detection times. This is mainly attributed to the
extremely short flow duration (around 1 second) and the small
inter-arrival time between packets within the flow.

In the case of a UDP scan attack (shown in sub-figure 7b),
conventional IDS systems wait for the timeout period as the
flow is UDP. As mentioned previously, all approaches require
two packets of the flow for accurate detection. However,
AttnRNN demonstrates the ability to detect the UDP scan
immediately after the occurrence of the second packet,
whereas conventional NIDS systems have to wait until the
end of the flow, resulting in a significantly longer detection
time (around 60 seconds compared to just a few milliseconds).

To summarize this subsection, our proposed model demon-
strates the capability to promptly classify malicious flows upon
the emergence of an attack trace. As discussed in paragraph
IV-E1, our model can reduce the number of packets required
for analysis. Furthermore, as illustrated in paragraph IV-E2,
our model significantly decreases the time needed for flow
detection. These findings related to our model’s capabilities
offer multiple advantages, including minimizing the impact
of attacks, reducing computational overhead associated with
analyzing skipped packets, improving attack response time,
and preventing further malicious activities within the network.

V. CONCLUSION

In this research work, we addressed the challenge of early
detection of network intrusions. We introduced a novel NIDS
that capitalizes on packet headers. Our innovative NIDS
integrates attention mechanisms and RNNs, harnessing the
sequential nature inherent in network flows. The efficacy of
our approach was thoroughly assessed through experiments
conducted on two contemporary network intrusion datasets.

10

(a) CIC-IDS2017

(b) 5G-NIDD
Fig. 6. Number of initial packets required for correct attack classification of a selected attack classes. AttnRNN (orange line), RNN (blue line),
Conventional flow-based NIDS (green line)

(a) CIC-IDS 2017 (b) 5G-NIDD
Fig. 7. Overall Attack Detection Time. AttnRNN (orange bars), Conven-
tional flow-based NIDS (green bars)

Furthermore, we delved into the early detection capabilities of
our model, highlighting its advantages from two perspectives:
(i) reducing the initial required packets for flow classification,
and (ii) minimizing the time needed for detection compared to
existing flow-based NIDSs approaches. The proposed NIDS
exhibits significant potential in fortifying the security and
resilience of networks across diverse environments, including
the evolving landscapes of 5G and beyond networks. In our
ongoing research, we aim to extend our proposed NIDS by
delving into several promising avenues, including the valida-
tion of our NIDS in real-world network environments, using
different datasets to assess its performance, scalability, and
effectiveness.

ACKNOWLEDGMENTS

This work was supported by the 5G-INSIGHT bilateral
project (ID: 14891397) / (ANR-20-CE25-0015-16), funded by
the Luxembourg National Research Fund (FNR), and by the
French National Research Agency (ANR).

REFERENCES

[1] A. Fuchsberger, “Intrusion detection systems and intrusion prevention
systems,” Information Security Technical Report, vol. 10, no. 3, pp.
134–139, Jan. 2005. [Online]. Available: https://doi.org/10.1016/j.istr.
2005.08.001

[2] M. Garuba, C. Liu, and D. Fraites, “Intrusion techniques: Comparative
study of network intrusion detection systems,” in Fifth International
Conference on Information Technology: New Generations (itng 2008),
2008, pp. 592–598.

[3] H. Alaidaros, M. Mahmuddin, A. Al Mazari et al., “An overview of
flow-based and packet-based intrusion detection performance in high
speed networks,” in Proceedings of the International Arab Conference
on Information Technology, 2011, pp. 1–9.

[4] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho,
“A survey of network-based intrusion detection data sets,” Computers
& Security, vol. 86, pp. 147–167, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S016740481930118X

[5] M. F. Umer, M. Sher, and Y. Bi, “Flow-based intrusion detection:
Techniques and challenges,” Computers & Security, vol. 70, pp.
238–254, 2017. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167404817301165

[6] R. Di Pietro and L. V. Mancini, Intrusion detection systems. Springer
Science & Business Media, 2008, vol. 38.

[7] D. Chou and M. Jiang, “A survey on data-driven network intrusion
detection,” ACM Computing Surveys, vol. 54, no. 9, pp. 1–36, Oct.
2021. [Online]. Available: https://doi.org/10.1145/3472753

[8] J. Lansky, S. Ali, M. Mohammadi, M. K. Majeed, S. H. T. Karim,
S. Rashidi, M. Hosseinzadeh, and A. M. Rahmani, “Deep learning-based
intrusion detection systems: A systematic review,” IEEE Access, vol. 9,
pp. 101 574–101 599, 2021.

[9] Y. A. Farrukh, I. Khan, S. Wali, D. Bierbrauer, J. A. Pavlik, and N. D.
Bastian, “Payload-byte: A tool for extracting and labeling packet capture
files of modern network intrusion detection datasets,” in 2022 IEEE/ACM
International Conference on Big Data Computing, Applications and
Technologies (BDCAT), 2022, pp. 58–67.

[10] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion traffic
characterization,” in Proceedings of the 4th International Conference
on Information Systems Security and Privacy. SCITEPRESS -
Science and Technology Publications, 2018. [Online]. Available:
https://doi.org/10.5220/0006639801080116

[11] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for
network intrusion detection systems (unsw-nb15 network data set),” in
2015 Military Communications and Information Systems Conference
(MilCIS), 2015, pp. 1–6.

[12] M. Hassan, M. E. Haque, M. E. Tozal, V. Raghavan, and R. Agrawal,
“Intrusion detection using payload embeddings,” IEEE Access, vol. 10,
pp. 4015–4030, 2022.

[13] M. C. Belavagi and B. Muniyal, “Performance evaluation of supervised
machine learning algorithms for intrusion detection,” Procedia Computer
Science, vol. 89, pp. 117–123, 2016, twelfth International Conference
on Communication Networks, ICCN 2016, August 19– 21, 2016,
Bangalore, India Twelfth International Conference on Data Mining and
Warehousing, ICDMW 2016, August 19-21, 2016, Bangalore, India
Twelfth International Conference on Image and Signal Processing,
ICISP 2016, August 19-21, 2016, Bangalore, India. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S187705091631081X

11

(a) CIC-IDS2017

(b) 5G-NIDD
Fig. 8. Attack Detection Time for a set of Labels. AttnRNN (orange bars), Conventional flow-based NIDS (green bars) of a selected attack classes

[14] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in 2009 IEEE Symposium on
Computational Intelligence for Security and Defense Applications, 2009,
pp. 1–6.

[15] I. H. Sarker, Y. B. Abushark, F. Alsolami, and A. I. Khan,
“Intrudtree: A machine learning based cyber security intrusion
detection model,” Symmetry, vol. 12, no. 5, 2020. [Online]. Available:
https://www.mdpi.com/2073-8994/12/5/754

[16] “Network intrusion detection dataset,” https://www.kaggle.com/datasets/
sampadab17/network-intrusion-detection.

[17] A. Iqbal, , and S. Aftab, “A feed-forward and pattern recognition
ANN model for network intrusion detection,” International Journal of
Computer Network and Information Security, vol. 11, no. 4, pp. 19–25,
Apr. 2019. [Online]. Available: https://doi.org/10.5815/ijcnis.2019.04.03

[18] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach
to network intrusion detection,” IEEE Transactions on Emerging Topics
in Computational Intelligence, vol. 2, no. 1, pp. 41–50, 2018.

[19] Akashdeep, I. Manzoor, and N. Kumar, “A feature reduced intrusion
detection system using ann classifier,” Expert Systems with Applications,
vol. 88, pp. 249–257, 2017. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0957417417304748

[20] F. Yan, G. Zhang, D. Zhang, X. Sun, B. Hou, and N. Yu, “TL-
CNN-IDS: transfer learning-based intrusion detection system using
convolutional neural network,” The Journal of Supercomputing, May
2023. [Online]. Available: https://doi.org/10.1007/s11227-023-05347-4

[21] A. R. Bahlali and A. Bachir, “Machine learning anomaly-based
network intrusion detection: Experimental evaluation,” in Advanced
Information Networking and Applications. Springer International
Publishing, 2023, pp. 392–403. [Online]. Available: https://doi.org/10.
1007/978-3-031-28451-9 34

[22] S. Zavrak and M. İskefiyeli, “Anomaly-based intrusion detection from
network flow features using variational autoencoder,” IEEE Access,
vol. 8, pp. 108 346–108 358, 2020.

[23] B. Min, J. Yoo, S. Kim, D. Shin, and D. Shin, “Network anomaly
detection using memory-augmented deep autoencoder,” IEEE Access,
vol. 9, pp. 104 695–104 706, 2021.

[24] Z. Wu, H. Zhang, P. Wang, and Z. Sun, “Rtids: A robust transformer-
based approach for intrusion detection system,” IEEE Access, vol. 10,
pp. 64 375–64 387, 2022.

[25] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani,
“Developing realistic distributed denial of service (DDoS) attack
dataset and taxonomy,” in 2019 International Carnahan Conference on
Security Technology (ICCST). IEEE, Oct. 2019. [Online]. Available:
https://doi.org/10.1109/ccst.2019.8888419

[26] K. Jiang, W. Wang, A. Wang, and H. Wu, “Network intrusion detec-
tion combined hybrid sampling with deep hierarchical network,” IEEE
Access, vol. 8, pp. 32 464–32 476, 2020.

[27] T. A. Tang, D. McLernon, L. Mhamdi, S. A. R. Zaidi, and
M. Ghogho, “Intrusion detection in SDN-based networks: Deep
recurrent neural network approach,” in Deep Learning Applications for
Cyber Security. Springer International Publishing, 2019, pp. 175–195.
[Online]. Available: https://doi.org/10.1007/978-3-030-13057-2 8

[28] H. Wang and W. Li, “Ddostc: A transformer-based network attack

detection hybrid mechanism in sdn,” Sensors, vol. 21, no. 15, 2021.
[Online]. Available: https://www.mdpi.com/1424-8220/21/15/5047

[29] M. A. Khan, “Hcrnnids: Hybrid convolutional recurrent neural network-
based network intrusion detection system,” Processes, vol. 9, no. 5,
2021. [Online]. Available: https://www.mdpi.com/2227-9717/9/5/834

[30] I. Ullah and Q. H. Mahmoud, “Design and development of rnn anomaly
detection model for iot networks,” IEEE Access, vol. 10, pp. 62 722–
62 750, 2022.

[31] H. Hindy, C. Tachtatzis, R. Atkinson, E. Bayne, and
X. Bellekens, “Mqtt internet of things intrusion detection dataset,”
2020. [Online]. Available: https://ieee-dataport.org/open-access/
mqtt-internet-things-intrusion-detection-dataset

[32] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards
the development of realistic botnet dataset in the internet of things for
network forensic analytics: Bot-iot dataset,” 2018.

[33] S. Nayyar, S. Arora, and M. Singh, “Recurrent neural network based
intrusion detection system,” in 2020 International Conference on Com-
munication and Signal Processing (ICCSP), 2020, pp. 0136–0140.

[34] “The caida ucsd ”ddos attack 2007” dataset,” https://www.caida.org/
catalog/datasets/ddos-20070804 dataset.

[35] P. Sun, P. Liu, Q. Li, C. Liu, X. Lu, R. Hao, and J. Chen, “Dl-ids:
Extracting features using cnn-lstm hybrid network for intrusion detection
system,” Security and Communication Networks, vol. 2020, pp. 1–11,
08 2020.

[36] X. Han, S. Cui, S. Liu, C. Zhang, B. Jiang, and Z. Lu, “Network intrusion
detection based on n-gram frequency and time-aware transformer,”
Computers & Security, vol. 128, p. 103171, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404823000810

[37] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets
for intrusion detection,” Computers & Security, vol. 31, no. 3, pp.
357–374, 2012. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167404811001672

[38] M. Tan, A. Iacovazzi, N.-M. M. Cheung, and Y. Elovici, “A neural
attention model for real-time network intrusion detection,” in 2019 IEEE
44th Conference on Local Computer Networks (LCN), 2019, pp. 291–
299.

[39] S. Kumar, “Survey of current network intrusion detection techniques,”
http://www.cse.wustl.edu/∼jain/cse571-07/ftp/ids/.

[40] “Cisco netflow configuration,” https://www.cisco.com/c/dam/en/us/td/
docs/security/stealthwatch/netflow/Cisco NetFlow Configuration.pdf.

[41] H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S. Valaee, “Recent
advances in recurrent neural networks,” 2018.

[42] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–80, 12 1997.

[43] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” 2014.

[44] Z. Niu, G. Zhong, and H. Yu, “A review on the attention mechanism
of deep learning,” Neurocomputing, vol. 452, pp. 48–62, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S092523122100477X

[45] “Transmission control protocol (TCP),” Tech. Rep., Aug. 2022.
[Online]. Available: https://doi.org/10.17487/rfc9293

12

[46] L. Weng, “Attention? attention!” lilianweng.github.io, 2018. [Online].
Available: https://lilianweng.github.io/posts/2018-06-24-attention/

[47] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2016.

[48] S. Samarakoon, Y. Siriwardhana, P. Porambage, M. Liyanage, S.-Y.
Chang, J. Kim, J. Kim, and M. Ylianttila, “5g-nidd: A comprehensive
network intrusion detection dataset generated over 5g wireless network,”
2022.

