A Survey on Machine Learning-based
Misbehavior Detection Systems for 5G and
Beyond Vehicular Networks

Abdelwahab Boualouache, Member, IEEE and Thomas Engel, Member, IEEE

Abstract—Advances in Vehicle-to-Everything (V2X) technology and on-
board sensors have significantly accelerated deploying Connected and
Automated Vehicles (CAVs). Integrating V2X with 5G has enabled Ultra-
Reliable Low Latency Communications (URLLC) to CAVs. However,
while communication performance has been enhanced, security and pri-
vacy issues have increased. Attacks have become more aggressive, and
attackers have become more strategic. Public Key Infrastructure (PKI)
proposed by standardization bodies cannot solely defend against these
attacks. Thus, in complementary of that, sophisticated systems should
be designed to detect such attacks and attackers. Machine Learning
(ML) has recently emerged as a key enabler to secure future roads.
Various V2X Misbehavior Detection Systems (MDSs) have adopted this
paradigm. However, analyzing these systems is a research gap, and
developing effective ML-based MDSs is still an open issue. To this end,
this paper comprehensively surveys and classifies ML-based MDSs as
well as discusses and analyses them from security and ML perspectives.
It also provides some learned lessons and recommendations for guid-
ing the development, validation, and deployment of ML-based MDSs.
Finally, this paper highlighted open research and standardization issues
with some future directions.

Index Terms—5G and Beyond, Connected and Automated Vehicles,
Machine Learning, Misbehavior Detection Systems, Security, Vehicle-
to-Everything

1 INTRODUCTION

The emergence of the fifth-generation (5G) mobile commu-
nications networks has brought a technological revolution
to the world, as it provides URLLC, high bandwidth, and
scalable coverage [1]. As one of the transportation verticals,
connected and automated vehicles are witnessing significant
advances with the advent of 5G [2]. Equipped with sophisti-
cated onboard sensors such as Radar, On-Board Unit (OBU),
and Lidar, CAVs can collect and process sensitive and valu-
able whereabouts data. Sharing this data among V2X nodes
helps to extend their perceptions for ensuring road safety,
avoiding traffic congestion, and providing a better driving
experience for users during their journey [3]. 5G-V2X com-
munications come to support data sharing while addressing
different application requirements. For time-sensitive V2X
applications, 5G-V2X provides URLLC with sufficient band-
width dedicated to infotainment applications. Combining
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5G-V2X with other 5G enablers such as Software Defined
Networking (SDN), Network Function Virtualization (NFV),
and Network Slicing (NS) has opened up a new era to CAVs
where several use cases such as teleoperated driving and
autonomous driving have emerged [4]. However, 5G-V2X is
facing a dangerous vector of attacks, leading to hazardous
situations for drivers and passengers. For example, breaking
the V2X link between two CAVs during overtaking or lane
merging can lead to an accident. Moreover, broadcasting
false information over the road network to create traffic
congestion impacts convenience, and the business [5]. These
security and privacy issues have been taken special atten-
tion by research communities since early research investiga-
tions on V2X [6]. Specifically, extensive research works have
been carried out to protect V2X communications. Several
cryptography solutions have been proposed for thwarting
V2X attacks [7-9]. In addition, standardization bodies have
designed a public key infrastructure to offer V2X security
services, especially authentication, integrity, and confiden-
tiality [10]. Standard specifications also defined message
formats and all cryptography tools to sign and encrypt
V2X messages. Cryptographic solutions allow for avoiding
a significant vector of attacks, specifically external attacks
launched by non-authenticated members. However, more
aggressive attacks launched by internal attackers persist.
More specifically, internal attacks such as Denial of Service
(DoS), position falsification, and message droppings pose a
real danger since attackers are already part of the network,
making them resistant to cryptographic solutions [11]. In ad-
dition, attackers have become more intelligent and strategic
in overcoming the defense lines [12]. In this context, mis-
behavior detection systems have been proposed as comple-
mentary to PKI to detect such attacks and exclude attackers
from the 5G-V2X system. However, detecting these attackers
is challenging and requires employing sophisticated and
intelligent detection mechanisms.

Machine learning has recently emerged as a key intelli-
gence enabler for future networks. It becomes obvious that
ML algorithms will be one of the pillars of 5G and beyond
and 6G mobile networks [13]. In addition, ML algorithms
have already proven their success in network security [14].
Consequently, several ML-based MDSs have been proposed
to detect attacks on 5G-V2X.

Figure 1 is a result of the quantitative study of the papers



TABLE 1: Abbreviations used throughout the paper.

Abbr | Description Abbr Description

3GPP | The 3rd Generation Partnership Project MNO Mobile Network Operator

5G The 5th generation mobile network NB Naive Bayes

5GB 5G and Beyond NEF Network Exposure Function

AF Application Function NFV Network Function Virtualization
AHC Agglomerate Hierarchical Clustering NFVI NFV Infrastructure

AMF Access and Mobility Management Function NGAP NG Application Protocol

ANN | Artificial Neural Network NR New Radio

AODV | Ad hoc On-Demand Distance Vector NRF Network Repository Function
ARP Address Resolution Protocol NS Network Slicing

AUC Area Under the Curve NS2/3 Network Simulator Version 2/3
AUSF | Authentication Server Function NSSF Network Slice Selection Function
AoA Angle of Arrival OBU On-Board Unit

BSM Basic Safety Message OMNeT++ Objective Modular Network Testbed in C++
BTP Basic Transport Protocol PDCP Packet Data Convergence Protocol
C-V2X | Cellular Vehicle-to-Everything PDR Packet Delivery Ratio

CACC | Cooperative Adaptive Cruise Control PDrR Packet Drop Rate

CAM | Cooperative Awareness Message PHY PHYsical layer

CAV Connected and Automated Vehicle PKI Public Key Infrastructure

CNN | Convolutional Neural Network PMR Packet Modification Ratio

CPF Control Plane Function R2L Remote-to-Local

CPM Collective Perception Message RF Random Forest

CPS Collective Perception Service RLC Radio Link Control

DDoS | Distributed Denial of Service RNN Recurrent Neural Network
DENM | Decentralized Environmental Notification Message || ROC Receiver Operator Characteristic
DL Deep Learning RSSI Received Signal Strength and interference
DR Detection Rate RSU Roadside Unit

DoS Denial of Service RTS Request To Send

ET Extra Tree SCTP Stream Control Transmission Protocol
ETSI European Telecommunications Standards Institute || SDN Software Defined Networking

FL Federated Learning SEPP Security Edge Protection Proxy
FN False Negative SLR Systematic Literature Review
FNR False Negative Rate SMF Session Management Function

FP False Positive SQL Structured Query Language

FPR False Positive Rate SST Singular Spectrum Transformation
GAN | Generative Adversarial Network SUMO Simulation of Urban MObility
GPRS | General Packet Radio Service SVM Support-Vector Machine

GPS Global Positioning System TCP Transmission Control Protocol
GRU Gated Recurrent Unit TN True Negative

GTP GPRS Tunneling Protocol TNR True Negative Rate

HTTP | HyperText Transfer Protocol TP True Positive

IBL Instance-Based Learning TPR True Positive Rate

ICMP | Internet Control Message Protocol U2R Remote-to-Local

IEEE Institute of Electrical and Electronics Engineers UDM Unified Data Management

P Internet Protocol ubDP User Datagram Protocol

KNN | k-Nearest Neighbors UPF User Plan Function

LGBM | Light Gradient Boosting Machine URLLC Ultra-Reliable Low Latency Communications
LLC Logical Link Control V2I Vehicle-to-Infrastructure

LR Logistic Regression V2N Vehicle-to-Network

LSTM | Long Short-Term Memory v2p Vehicle-to-Pedestrian

LTE Long-Term Evolution V2v Vehicle-to-Vehicle

MAC | Media Access Control V2X Vehicle-to-Everything

MANO | MANagement and Orchestration VANET Vehicular Ad-Hoc Network

MDS Misbehavior Detection System VNF Virtual Network Function

MEC Multi-access Edge Computing VRU Vulnerable Road Users

ML Machine Learning VUE Vehicular User Equipment
MLOps| ML Operations WiFi Wireless Fidelity




surveyed in this paper. It shows the number of published
papers on ML-based MDSs per year. As can be seen, recent
years have witnessed a notable increase in the number
of proposed ML-based MDSs. This is due to the trust of
the research communities in ML for providing efficient
and evolving MDSs for 5G-V2X [15]. However, analyzing
these ML-based MDSs is still a research gap. Therefore, this
survey comes to fill this gap and complements ongoing
research and standardization activities on MDSs for V2X.
[16, 17]. This survey analyzes existing ML-based MDSs not
only from security but also from ML perspectives. Thus, it
establishes analysis guidelines and presents learned lessons
and recommendations for future ML-based MDSs. It also
identifies open research and standardization gaps that need
attention and priority to deploy ML-based MDSs success-
fully. Table 1 describes abbreviations used throughout the

paper.
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Fig. 1: Number of published papers on ML-based MDSs per
year

Research method

The method used in this survey is a Systematic Literature
Review (SLR) [18], which consists of five steps: research
questions, literature retrieval, literature evaluation, data ex-
traction, and results and discussion. Generally, three key
questions lead our research: (i) "What are the ML-based
MDSs exist for 5G and Beyond (5GB) vehicular networks?",
(ii) "What are the features and limitations of the existing
ML-based MDSs for 5GB vehicular networks?", and (iii)
"What are the open research issues regarding ML-based
MDSs for 5GB vehicular networks". Based on these research
questions, we have used a combination of many keywords
in the search engines. Specifically, we have combined three
sets of keywords. The first set includes keywords regard-
ing misbehavior detection, such as "misbehavior detection”
or "intrusion detection", "attack detection”, and "anomaly
detection. In the second set, we have used key works
to refer to machine learning, such as "machine learning",
"artificial intelligence", or "deep learning". Finally, the third
set includes keywords regarding vehicular networks such
as "5G vehicular networks", "internet of vehicles", "con-
nected vehicles", "autonomous vehicles", "connected and au-
tomated vehicles", "Vehicular Ad-Hoc Network (VANET)",
and "VANET".

Around 200 research papers related to the research topic
were found in the initial search. But after reading, papers
were removed from the literature review if their contents
were unrelated to our research questions. Specifically, Ta-
ble 2 describes inclusion and exclusion criteria. This survey
primarily includes a paper if several criteria meet: (i) the
paper should be written in English and keywords appear
in its title or abstract, (ii) the paper should be published in
journals, books, or proceedings of conferences, symposiums,
or workshops; and (iii) the paper should focus on detecting
misbehaviors in vehicular communications. However, the
same paper was excluded if an incomplete study or ML is
used in other networking aspects but not in misbehavior
detection. The paper was also excluded if ML was men-
tioned for detecting misbehaviors but not elaborated on or
if methods other than ML were used. At the end of the SLR,
92 papers were left and were the focus of this survey.

TABLE 2: Inclusion and exclusion criteria

Inclusion Criteria Exclusion Criteria
Keywords appeared in the title

or abstract

Incomplete study

ML is used in other networking
aspects, but not in misbehavior
detection

The use of ML is mentioned

for detecting misbehaviors but
not elaborated

The use of ML was mentioned
for detecting misbehaviors but
methods other than ML were
used

Written in English

Published in journals, books, or
proceedings of conferences,
symposiums, or workshops

Focus on detecting misbehavior
in vehicular communications

Relevant surveys

Several surveys have been conducted on security and pri-
vacy in vehicular networks. The authors of [28] highlighted
security challenges in the V2X environment. They also
identified various cybersecurity risks and vulnerabilities
and analyzed corresponding defense strategies for securing
CAVs. The authors of [26] classified the available defense
mechanisms into four categories: cryptography, network
security, software vulnerability detection, and malware de-
tection. The authors of [19] surveyed possible attacks and
the corresponding detection mechanisms. The authors of
[20, 27] reviewed detection schemes of data falsification
attacks. The authors of [21] reviewed various MDSs and
classified them into three different categories. The authors
of [22] clearly defined V2X misbehavior. They also reviewed
different MDSs and provided a comprehensive classification
of the existing MDSs. However, all previous surveys have
reviewed MDSs in general without focusing on ML aspects.
The authors of [31, 32] discussed the role of ML in enabling
efficient cybersecurity defense mechanisms for V2X. The
authors of [29] classified the ML techniques according to
their use in V2X applications and discussed approaches and
working principles of these ML techniques in addressing
various security challenges. The authors of [23] survey
MDSs targeting only three communication attacks: false
information, blackhole, greyhole and wormhole attacks, and
DoS with explicit indication of MDSs that are based on ML.
The authors of [24] surveyed ML-based MDSs detecting



TABLE 3: A comparison between this survey and relevant surveys on security for V2X
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only DDoS attacks. The authors of [25] presented an SLR
for some ML-based MDSs for V2X along with their ML
algorithms, architectures, and datasets. The authors of [30]
also reviewed some ML-based MDSs for V2X.

Table 3 compares this survey with relevant V2X security
surveys considering different criteria: (i) the attacks targeted
by the survey; (ii) whether the survey focuses on the MDS
within the ML context; (iii) whether the survey analyzes
ML-based MDSs from the ML and security perspective; (iv)
whether the survey describes recommendations and open
issues for building efficient ML-based MDSs. Only a few
relevant surveys focus on MDSs while considering the ML
context. In addition, although previous surveys cover some
ML-based MDSs, they lack deep analysis from both ML
and security perspectives. Furthermore, relevant surveys
miss recommendations and open issues from building ef-
ficient ML-based MDSs. Thus, to complement these efforts
and unlike previous surveys, this survey presents a wide-
coverage and comprehensive review of existing ML-based
MDSs for 5G-V2X. This survey includes in-depth technical

analyzes from both ML and security perspectives. It also
highlights recommendations and open issues to fill research
and standardization gaps. To the best of our knowledge, we
are the first to propose such a survey. We hope this survey
will build guidelines to select the best ML-based MDSs to
implement in the near deployment of 5G-V2X and shape
future research directions on this topic.

Contributions

The main contributions of this paper can be summarized as
follows:

o Survey and elaborate taxonomy of machine learning-
based misbehavior detection systems.

o Perform in-depth technical analyzes from both ML
and security perspectives of ML-based MDSs.

o DPresent lessons learned and recommendations for
developing, evaluating, and deploying ML-based
MDSs.
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o Highlight open research and standardization issues
on the topic.

The rest of the paper is organized as follows. Section 2
presents some necessary background information. A taxon-
omy of machine learning-based misbehavior detection sys-
tems for 5GB vehicular networks is presented in Section 3.
Section 4 analyzes and discusses the presented ML-based
MDSs. Lessons learned and recommendations are discussed
in Section 5. Open research issues are given in Section 6.
Finally, Section 7 concludes this survey. The roadmap of this
survey is given in Figure 2.

2 BACKGROUND

The purpose of this section is to give the reader the nec-
essary background information to understand the research
presented in this paper. This section is divided into five
subsections. Firstly, it describes the architecture of 5G-V2X.
Next, it overviews security requirements, attacker models,
and attacks on 5G-V2X. Then, the definition of the MDS is
given. After that, overviews various ML techniques and con-
cepts. Finally, it describes the development and evaluation
elements of ML-based MDSs.

2.1 5G-va2X

Figure 3 illustrates a CAV equipped with a V2X com-
munication interface and several installed sensors such as
Radar, OBU, Lidar, Camera, ultrasonic sensors, and Global
Positioning System (GPS). Three principle essential services
are enabled in CAVs: (i) the broadcast service allows broad-
casting a message called Cooperative Awareness Message
(CAM) in EU [33], and Basic Safety Message (BSM) in the
US [34]. Both of these messages contain state information of
vehicles such as their position, speed, acceleration, etc.; (ii)
the decentralized environmental notification service allows
triggering a Decentralized Environmental Notification Mes-
sage (DENM), which includes information related to a road
hazard or abnormal traffic conditions, such as its type and
its position [35]; and (iii) the Collective Perception Service
(CPS) which allow sharing sensor data between CAVs about
non-connected objects such as non-V2X vehicles, obstacles,
pedestrians, and animals. This service enables generating
and consuming a message called Collective Perception Mes-
sage (CPM), acting as a complement to messages generated
in the two previous services [36, 37]. This section describes
the main building blocks of 5G-V2X.



2.1.1  Communication technologies

Several communication technologies have been suggested
for V2X communications. Two leading technologies have
been designed and customized to support V2X commu-
nications and enable direct information sharing between
CAVs. Currently seen as alternatives to each other, these
technologies are IEEE 802.11p (ITS-G5 in Europe) and Cel-
lular Vehicle-to-Everything (C-V2X) [38]. However, ITS-G5
has known a slow development on a wide scale in favor of
C-V2X, which is witnessing significant growth led by the
3rd Generation Partnership Project (3GPP) [39].

Lidar
Camera

V2X
communicgtions

Ultrasonic
sensor

OBU

Radar

Fig. 3: An example of a connected and automated vehicle

C-V2Xis already part of the completed 3GPP Long-Term
Evolution (LTE) Releases 14 and 15 [40]. It is designed to
support URLLC for V2X use case groups specified Release
16 [41]. This subsection describes the protocol stacks of ETSI
ITS-G5 and C-V2X, respectively.

2.1.1.1 ETSI ITS-G5 protocol stack

ETSI ITS-G5 is based on physical and Media Access control
(MACQ) layers defined in the IEEE 802.11p protocol. The
802.11p modifies the physical and MAC layers of 802.11a
to be adapted for V2X communications in a frequency
band from 5.85 to 5925 GHz, which is segmented into
seven channels of 10 MHz each. ITS-G5 standard uses
the decentralized congestion control protocol to minimize
the probability of radio channel congestion. As shown in
Figure 4 (a), for the Internet Protocol (IP)-based applications
(non-safety applications), ITS-G5 uses the IP for the network
layer and the User Datagram Protocol (UDP)/Transmission
Control Protocol (TCP) for the transport layer. On the other
hand, for non-IP-based applications (safety applications),
ITS-G5 uses the Geonetworking protocol to enable packets’
routing based on the geographic position of vehicles in
the network layer [42], while the Basic Transport Protocol
(BTP) is used to offer point-to-point connectionless network
transport service in the transport layer [43]. ITS-G5 also
introduces the facilities layer between the transport layer
and the applications layer, where several messages were
defined [44]. For example, the CAM was defined for the
periodic messages, and the DENM was defined for the event
messages.

2.1.1.2 C-V2X User Plan Stack

As shown in Figure 4 (b), the protocol stack of C-V2X via
PC5 interface is mainly based on the 3GPP Releases for the

low layers (PHY, MAC, RLC, and PDCP) and reuses the
layer stacks from the Institute of Electrical and Electronics
Engineers (IEEE) and European Telecommunications Stan-
dards Institute (ETSI) for the upper layers (network and
transport layers) [45]. The PHYsical layer (PHY) transmits
data on the sidelink, exploiting 10 MHz or 20 MHz band-
widths at the 5.9 GHz radio frequency band. The MAC
layer implements the blind hybrid automatic repeat request
without feedback. The Radio Link Control (RLC) layer is
in charge of delivering service data units in sequence and
segmenting and reassembling them. The Packet Data Con-
vergence Protocol (PDCP) sub-layer separates 3GPP radio
access protocol layers from those related to V2X applications
[46]. As shown in Figure 4 (c), The protocol stack of C-V2X
via Uu link for V2N is common for communications in 5G
architecture.

2.1.2 Architecture

V2X communication types are classified as follows [47]:
(i) Vehicle-to-Vehicle (V2V) for direct communications be-
tween Vehicular User Equipment (VUEs); (ii) Vehicle-to-
Infrastructure (V2I) for communications between vehicles
and the RSUs, which can be deployed as radio base stations
in 5G networks (gNodeBs) or in standalone devices; (iii)
Vehicle-to-Pedestrian (V2P) between VUEs and Vulnerable
Road Users (VRUs) such as pedestrians and bikers; and (iv)
Vehicle-to-Network (V2N) for communications with remote
servers and cloud-based services reachable through the cel-
lular infrastructure. The enhancement of 3GPP to support
C-V2X communications concerns the radio access network
(the New Radio) and the core network.

2121 5G-NR V2X

Several enhancements are introduced in Release 16 within
New Radio (NR) to support V2X applications” demands in
terms of latency and reliability [41]. These enhancements
range from introducing more disruptive radio technologies
(e.g., flexible waveforms) to improving specific commu-
nication modes (e.g., multicast and groupcast). V2X NR
covers both the PC5 and Uu radio interfaces. The PC5
radio interface (sidelink) is used for V2V, V2P, and V2I
communications, bypassing the cellular infrastructure. In
the absence of a cellular network, the 5.9 GHz radio fre-
quency band is employed to ensure ultra-high availability
in all regions, regardless of the Mobile Network Operator
(MNO). 5G-V2X supports two resources allocation modes
for PC5 for sidelink V2V communications [48]: Mode 3
(scheduled) — operates in coverage of a gNodeB, which is
in charge of the allocation of radio resources, and Mode 4
(autonomous) — can operate both in- and out-of-coverage of
an eNodeB, where the allocation of radio resources is agreed
between vehicles without support for the infrastructure.
V2N communications occur over the conventional cellular
Uu interface operating in the licensed spectrum. This inter-
face has been modified to handle unicast and multicast V2X
communications with fewer changes that enable efficient
V2X information sharing to meet the latency requirements
of V2X applications.
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2.1.2.2 5G Core Network

The 5G core network is designed to enable mobile data con-
nectivity and support various verticals leveraging emerging
technologies, such as SDN and NFV. By separating the
User Plane Function (UPF) from the Control Plane Function
(CPF), the 5G core becomes scalable and flexible. The build-
ing blocks of the 5G core are a set of Virtual Network Func-
tions (VNFs), including the Authentication Server Function
(AUSEF), Access and Mobility Management Function (AMEF),
User Plan Function (UPF), Session Management Function
(SMF), Network Slice Selection Function (NSSF), Unified
Data Management (UDM), Application Function (AF), Net-
work Repository Function (NRF), Network Exposure Func-
tion (NEF), and Security Edge Protection Proxy (SEPP).

Figure 5 shows a high-level view of the 5G-V2X archi-
tecture for V2X communication over PC5 and Uu reference
points.

2.1.3 CAV supporting technologies in 5G

In addition to 5G-V2X communication technology, CAVs are
supported by other 5G enabling technologies. This subsec-
tion describes the key 5G enabling technologies supporting
CAVs.

2.1.3.1 SDN

SDN is a paradigm that allows a network to be man-
aged and controlled with a logically-centralized approach,

Fig. 5: The 5G-V2X architecture and its communication
interfaces

separating the control and data planes. SDN brings pro-
grammability and flexibility to manage vehicular networks
efficiently [49].



21.3.2 NFV

NFV allows virtualizing network services that are tradition-
ally run on proprietary hardware, such as routers, firewalls,
and load balancers. These services are packaged as virtual
machines or containers on commodity hardware, which
allows service providers to run their network on standard
servers instead of proprietary ones [50]. NFV enables virtu-
alizing 5GB vehicular network services, making them easy
to manage and allocate [51].

2.1.3.3 Multi-access Edge Computing (MEC)

MEC moves services from a centralized cloud to the net-
work’s edge closer to the customer. MEC enables the col-
lecting and processing of data close to the customer, reduces
latency, and gives high-bandwidth applications real-time
performance. The emergence of SDN and NFV has facili-
tated the deployment of MEC and accelerated its adoption.
MEC brings several benefits to 5GB vehicular networks,
including deploying highly virtualized computing services
and offloading data processing tasks to MEC nodes near
CAVs.

2134 NS

NS aims to create multiple virtual networks on the same
shared and programmable physical infrastructure. Network
slicing then increases the exploitation degree of 5G physical
infrastructure while boosting the performance of applica-
tions and services. For CAVs, NS can enable several 5G-
V2X networks with different requirements to co-exist and
operate together while enjoying isolation [39].

2.1.3.5 Mobility Management (Handover and Roaming)

Due to their high and dynamic mobility, CAVs are one of
the most demanding 5GB verticals regarding mobility man-
agement. CAVs moving on roads switches their attachment
to the network from one cell to another. Transferring data
sessions from one cell to another cell is called handover.
Handovers can be horizontal or vertical. Horizontal han-
dovers are defined as handovers within the same access
networks. In addition, vertical handovers are defined as
handovers across heterogeneous access networks. CAVs
frequently perform handovers, and 5GB procedures should
provide seamless handovers to ensure V2X service continu-
ously and URLLC requirements [52, 53].

On the other hand, in areas where the borders are
open, like the European Schengen space, CAVs often cross
country borders triggering inter-public land mobile network
handover to switch from the home network to the visited
network. In the roaming state, CAVs are served by the
visited MNO, ensuring service and session continuity, 5GB
core/MEC interconnection, and V2X application state trans-
fer to meet the requirements [54].

2.1.4 Use case groups

3GPP technical report 22.886 [55] presents a comprehensive
description of the envisaged 5G-V2X use case groups, which
are given as follows [56]:

2.1.4.1 Vehicle Platooning

This group includes use cases that enable forming groups
of vehicles in platoons while maintaining their functioning
through the periodic exchange of messages. Vehicle pla-
tooning can be either centralized or decentralized. In the
centralized case, the first vehicle in the platoon (the leader)
controls the driving decisions of the rest ( the followers).
Moreover, in the decentralized case, each vehicle takes its
driving decision according to information from other vehi-
cles in the platoon.

2.1.4.2 Advanced Driving

This group comprises use cases allowing semi- or fully-
automated driving while ensuring traffic efficiency and
road safety. Specifically, advanced driving enables manag-
ing complicated maneuvers such as lane merging or over-
taking, or cooperative collision avoidance, requiring sharing
driving intentions with CAVs nearby. In such use cases,
CAVs coordinate their trajectories or maneuvers by sharing
driving plans and data obtained from their local sensors
with CAV and/or MEC nearby.

2.1.4.3 Extended Sensors

This group aims to improve vehicle perception by exchang-
ing data collected from different data sources, such as local
sensors, RSUs, MECs, and VRUs. This group’s use cases
help CAVs to have a more holistic view of the local situation
by providing an enhanced perception of the environment
beyond what their sensors can detect. For example, a lead-
ing CAV can use a camera to capture the road in front of
CAVs and continuously stream a video to the following
CAVs with the help of MECs. Such use cases help to extend
the perception of CAVs and greatly improve road safety in
the case of complex manoeuvers on two-way roads.

2.14.4 Remote Driving

This group enables to drive CAVs remotely. In a basic
remote driving scenario, remote human operators receive
real-time data streams from CAV’s sensors to create and
send back commands over V2N links for controlling CAVs.
Remote driving enables several use cases, including remote
assistance to beginner drivers to overcome difficult road
situations, facilitating autonomous public transportation
services with predefined routes and stops, and supporting
highly automated vehicles to perform complex maneuvers
and overcome unfamiliar navigation environments.

2.2 Security and privacy for 5G-V2X

This section is divided into three subsections: security re-
quirements, attacker models, and attack classification.

2.2.1 Requirements

5G-V2X communications are subject to an extensive range
of attacks and cyber-threats, which can have significant
negative consequences on the integrity and functionality
of the 5G-V2X system, potentially putting drivers’ lives at
risk. Moreover, protecting privacy is crucial because the



lack of privacy may disturb the public acceptance and the
successful deployment of 5GB vehicular networks [57]. This
subsection discusses the security and privacy services for
5G-V2X networks.

2.2.1.1 Authentication

Authentication is a procedure or process for certifying the
identity of users with the objective of authorizing access
to resources and/or privileges. Entity authentication is re-
quired in 5GB-V2X networks to prevent unauthorized users
from injecting fake messages. Apart from entity authentica-
tion, data authentication is also necessary to verify that the
received data is not tampered with or replayed.

2.2.1.2 Integrity

Integrity allows for ensuring the accuracy, consistency, and
immutability of data against malicious operations aimed at
altering them. Data integrity is a must to protect drivers
from malicious V2X participants, which can act to change
data exchange between V2X nodes or can generate rogue
messages similar to benign messages for affecting network
operations.

2.2.1.3 Availability

Availability ensures that systems and services are available
to users when they need them. Specifically, it comprises not
only timely and reliable access to systems and services when
required but also continuous availability for the time it is
needed. In 5G-V2X networks, availability ensures that V2X
messages are delivered to all of the intended recipients at
the right moment. It also guarantees the continuity of V2X
services.

2.2.14 Confidentiality

Confidentiality is the process of preventing unauthorized
users from accessing sensitive information. In 5G-V2X net-
works, confidentiality ensures that only authorized V2X
participants can access the exchanged data. However, ap-
plying confidentiality can add an overhead of processing
data in time-sensitive 5G-V2X applications. Thus, using this
security service highly depends on 5G-V2X use cases and
the nature of the data to protect.

2.2.1.5 Non-repudiation

Non-repudiation protects against users who deny having
performed specific actions such as creating, sending, and
receiving messages using mechanisms checking if users took
those actions or not. In 5G-V2X networks, non-repudiation
is necessary to prevent legitimate V2X participants from
denying the transmission or reception of the content of their
messages.

2.2.1.6 Access control

Access control is the process of approving and rejecting
specific requests to access and use information and services.
Access control is necessary to ensure the system’s reliability

and security. The 5G-V2X system should be able to quickly
revoke misbehaving V2X nodes from the system to protect
the safety of legitimate V2X participants.

2.2.1.7 Privacy

Privacy is one of the fundamental human rights protected
by laws. In 5G-V2X networks, users’ personal and private
data should be protected against such interference or at-
tacks. However, many operations can violate users’ privacy
in 5GB-V2X. Confidential information regarding the driver
and passengers must be protected, such as the number
of passengers, their names, and their destinations can be
indirectly obtained by monitoring CAVs’ communications.

2.2.2 Attacker model

Because of the V2X system’s intricacy, different adver-
saries can launch various attacks. The authors of [58] have
thoroughly examined potential adversaries in V2X in [58]
and identified the following types of attackers:

« Global versus. Local: A global attacker has a wider
coverage of the V2X system than a local attacker. It
can then eavesdrop on every message sent out by any
vehicle.

o Active versus. Passive: An active attacker can alter or
inject messages into the V2X system, while a passive
attacker can only eavesdrop on messages.

« Internal versus External: An internal adversary is an
authenticated participant of the V2X system, while
an external adversary is an intruder.

« Malicious versus rational: A malicious attacker aims
to damage the V2X system without caring about its
interests, while a rational attacker aims to achieve its
interests while performing attacks.

2.2.3 Attack classification

This subsection classifies and describes traditional attacks
on 5GB vehicular networks. Figure 6 shows an overview
of these attacks, while Table 4 specifies the applications
targeted by these attacks and the types of attackers (internal
or external) that can launch them. The next subsection
focuses on attacks and threats on vehicular networks posed
by 5G enabling technologies.

2.2.3.1 Attacks on authentication

o Sybil: This attack mainly concerns non-IP-based
V2X (safety-related) applications where vehicles use
multiple identifiers to protect their location privacy.
However, these identifiers can also be exploited as
Sybils, for example, to inject false information into
the V2X system to alter the perception of vehicles or
to create the illusion of traffic congestion.

o Impersonation or masquerading: The attacker ex-
ploits a valid identity to obtain V2X access for
launching more advanced attacks and stealing pri-
vate information. More specifically, this attack mainly
exploits the vulnerabilities in IP-based applications
to get remote access to the V2X node through a
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multi-stage process starting with probing and port « Replay: In this attack, malicious V2X nodes replay

scanning to network and application layers exploits
such as Malware, Structured Query Language (SQL)
injection, and DNS poisoning.

« Certificate replication: In this attack, malicious V2X
nodes try to hide their identities by utilizing repli-
cated certificates. Malicious nodes will no longer use
certificates who blacklisted.

2.2.3.2 Attacks on integrity

« Inject/Alter false messages: In this attack, malicious
nodes send wrong information (e.g., position, speed,
etc.) to honest vehicles, which may put them in dan-
gerous situations. This attack could be more likely in
non-IP-based applications.
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messages captured at different times and show them
as generated by original senders.

GPS spoofing: Malicious nodes deceive GPS re-
ceivers of other V2X nodes by re-transmitting real
GPS signals captured elsewhere at a different time or
by transmitting inaccurate GPS signals.

Tunneling: In this attack, the attacker controls at
least two V2X nodes to establish a tunnel between
them; hence, it can inject false data from one place to
another. Tunneling can be considered a special case
of a false message injection attack.



TABLE 4: Specification the type of attackers and the applications targeted by 5G-V2X attacks

c [ X

32|~

i) ¢t

-k

G

ES | F 8

: . Z> | B &

Security Service Attack External | Internal

Impersonation or masquerading X X X X
Authenticity Sybil attack X X
Certificate replication X X X
Inject/ Alter false messages X X X
. Repla X X X X
Integrity GPS sgooyﬁng X | X X X
Tunneling X X
Deny of service (DoS) X X X X
o1y Blackhole and Greyhole X X X
Availability Jamming attac}li X X X X
Wormbhole X X
Confidentiality Man in the middle X X
Non-repudiation Loss of events traceability X X X
. Eavesdroppin X X X X
Privacy Location trzgkiﬁg X X X

2.2.3.3 Attacks on availability

DoS/Distributed Denial of Service (DDoS): This
attack prevents vehicles from having normal access
to network services. A DDoS attack is a DoS attack
variant involving a set of malicious V2X nodes. Both
IP-based and non-IP-based V2X applications are vul-
nerable to DoS attacks. In non-IP-based applications,
the DoS attacks can be achieved by increasing the
frequency of periodic messages. In contrast, the DoS
attack can be performed at different levels in IP-
based applications, such as UDP flooding and Ad-
dress Resolution Protocol (ARP) flooding.

Blackhole and Greyhole: In these attacks, malicious
V2X nodes stop disseminating received messages to
the neighboring V2X entities. While in the greyhole
only selected messages are dropped, in the black-
hole attacker drops all received messages. These at-
tacks mainly concern IP-based routing protocols (e.g.,
Ad-hoc On-Demand Distance Vector (AODV)) and
position-based routing protocols (e.g., GeoNetwork-
ing).

Wormhole: Similar to the tunneling attack, in the
wormhole attack, attackers establish a tunnel be-
tween malicious V2X nodes to conduct a DoS attack
disrupting IP-based routing protocols.

Timing: In this attack, malicious V2X nodes inten-
tionally delay forwarding the received messages to
the following nodes in dissemination and routing
protocols. This attack is hazardous, especially in
time-sensitive safety-related applications.

Jamming: In this attack, the attacker generates sig-
nals to corrupt the data or jam the radio channel. Both
ETSI ITS-G5 and C-V2X standards are vulnerable to
this attack.
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2.2.3.4 Attacks on confidentiality

Man-in-the-middle: The attacker establishes sepa-
rate connections with the victims and passes mes-
sages between them to give the impression that they
are in direct communication, but in fact, all conver-
sations between the two victims are intercepted.

2.2.3.5 Attacks on Non-repudiation

Loss of events traceability: In this attack, the attacker
performs a set of actions to help in the denial of spec-
ified events. These actions mostly involve deleting its
traces or causing confusion for the auditing entity.

2.2.3.6 Attacks on privacy

Eavesdropping: Attackers gather data from the 5G-
V2X networks to extract information from which
they can benefit to identify drivers and passengers,
track their trajectories, or use them for launching
other attacks. The next attack will focus on trajectory
tracking since attackers can easily eavesdrop to get
position information from CAMs.

Location tracking: CAMs aim to provide awareness
for CAVs about their surrounding environment. They
are sent in clear text and contain sensitive mobility in-
formation of CAVs, such as their identifier, position,
speed, and acceleration. However, passive attackers
can easily collect and exploit these messages for
position and trajectory tracking [59-62]. Therefore,
attackers will be able to know every location visited
by drivers since this is a strong relationship between
CAVs and their drivers. Trajectory tracking moti-
vations vary and range from curiosity to criminal
purposes.



2.2.4 Threats from 5G enabling technologies

While threats and attacks described in the previous section
already pose serious security challenges to CAVs, 5G en-
abling technologies can worsen the situation by opening up
new surfaces of threats and attacks [63]. This subsection
describes the threats imposed by the main 5G enabling
technologies to CAVs.

2.2.4.1 SDN-related threats

SDN provides 5GB vehicular networks with programmable
and flexible network control through its application, control,
and data layers. However, it also brought SDN threats to
these networks. Specifically, each SDN layer has its secu-
rity vulnerabilities [64]. The application layer is vulnerable
to malicious application planting, data tampering, cross-
application poisoning, and application eviction attacks. The
control layer, the main component of SDN, is vulnerable to
packet-in flooding attacks, unauthorized network control,
and topology poisoning attack, among others. The data
layer, including V2X nodes, is vulnerable to flow table
overflow attacks, malicious control message injection, data
leakage, and more [65].

2.2.4.2 NFV-related threats

By releasing network resources and functions from special-
ized physical equipment, NFV enables the physical network
to support several logical networks. However, it makes
the systems more vulnerable to data exfiltration, resource
starvation, and side-channel attacks by widening the attack
surface [66].

The NFV Infrastructure (NFVI), VNFs, and NFV MAN-
agement and Orchestration (MANO) are the three key ele-
ments of the NFV architecture. NFVI is vulnerable to several
attacks, such as compromised hypervisors and resource
consumption attacks. VNFs are also vulnerable to attacks
such as DoS and illegal VNF migration. In addition, the
integrity and availability of VNFs and potentially the entire
network may be affected by MANO threats such as sensitive
data leakage and malicious manipulations [65].

2.2.4.3 MEC-related threats

Integrating MEC with 5GB vehicular networks increases the
threat surface to these networks since MEC nodes are attrac-
tive targets for attacks. MEC nodes are vulnerable to DoS,
making critical V2X safety available and putting CAVs in
dangerous situations. Attackers can also gain access to MEC
nodes, inject rogue hard-and software to run man-in-the-
middle attacks, and derive private information regarding
CAUVs in proximity [67].

2.2.4.4 NS-related threats

5GB vehicular networks are vulnerable to several attack
surfaces exposed by NS enabling technologies (SDN and
NFV). As shown in the previous subsections, these enabling
technologies also have vulnerabilities that attackers can ex-
ploit. In addition, attackers can use NS breaches to generate

12

attacks against NS functioning, including [65] (i) Unautho-
rized Access, where attackers perform identity spoofing to
gain unauthorized access to the V2X network slice. This
attack is usually a prerequisite for achieving further attacks;
(ii) DoS, where the attacker(s) overloads the target V2X
network slice with high volumes of network traffic and
requests, stopping the service provided by the slice. V2X
Network slices, which share the same physical resources
with the target network slice, could also be affected, leading
to slice performance degradation and indirect DoS attack;
and (iii) Cross-Slice Data Leakage: since CAVs can attach
to multiple V2X network slices simultaneously, they can
receive sensitive data on one V2X network slice and share it
with other V2X network slices, occurring data leakage.

2.2.4.5 Mobility management-related threats

5G Mobility management procedures, including handover
and roaming, can also bring attack surfaces to vehicular
networks. Attackers can exploit inter-gNodeB handover
authentication mechanisms vulnerabilities such as a false
base-station attack, de-synchronization attack, or key com-
promise to break CAVs connectivity. Or, they can launch
DoS during handovers to interrupt critical V2X safety ser-
vices [68, 69]. Moreover, roaming crossing borders is sensi-
tive due to the potential disparity of security levels between
MNOs (home and visited), making interconnection points
between MNOs easily exploitable by attackers.

2.3 Misbehavior detection systems: Definition

Several cryptography solutions have been proposed for
thwarting V2X attacks. More specifically, standardization
bodies have designed a PKI to offer V2X security services,
especially authentication, integrity, and confidentiality [10].
Standard specifications define not only message formats
but also all cryptography tools to sign and encrypt V2X
messages [70]. However, although an important vector of
attacks has been avoided using these solutions, attacks are
still being performed, especially from internal attackers. In
this context, misbehavior detection systems have been pro-
posed complementary to PKI to detect attacks and exclude
attackers from the V2X system.

In this survey, misbehavior refers to both faulty and ma-
licious (intrusion) actions. Faulty nodes misbehave without
malicious intent due to damage or other technical issues. For
example, a malfunctioning vehicle’s onboard GPS sensor
can provide inaccurate position data. Moreover, malicious
nodes or attackers act with malicious intent.

On the other hand, misbehavior detection systems can
be classified into three groups described as follows [22]:

2.3.1 Node-centric

This category checks if the node’s behaviors (e.g., message
frequency and the ratio between received and forwarded
packets) align with protocol specifications. They can be
divided into two classes: (i) behavior-based: in which the
attacker is detected in case of abnormal actions (e.g., mes-
sage dropping), and (ii) Trust-based: in which trust values
are assigned to V2X nodes. An attacker is detected if its
trust value drops below a certain threshold. In this category,



ML models can be built based on statistical data on 5G-V2X
nodes to detect misbehaviors.

2.3.2 Data-centric

This category focuses on the plausibility and consistency
of data, which nodes can individually or collaboratively
verify. These systems can also be divided into two classes:
(i) Plausibility based: which use plausibility checks to de-
cide on the correctness of data such as the received speed
and position, and (ii) Consistency based: which inspect the
relations between message to decide on the trustworthiness
of newly received messages. For example, checking the
difference between two received positions given a constant
speed. In this category, ML models can be built based on the
contents of messages exchanged between 5G-V2X nodes to
detect misbehaviors.

2.3.3 Hybrid

This category adopts a combined approach that uses a
node-centric system to evaluate nodes according to the
correctness of the exchanged data, while the correctness of
the information is verified using a data-centric mechanism.
In this category, ML models can be built based on both
statistical data on 5G-V2X nodes and the contents of
messages exchanged between them to detect misbehaviors.

This survey reviews ML-based MDSs that detect misbehav-
iors (faults and intrusions). Data used by these ML-based
MDSs can be from 5G-V2X node behaviors or/and data
exchanged between 5G-V2X nodes.

2.4 Machine learning algorithms

"Machine learning is a branch of artificial intelligence (AI)
and computer science which focuses on the use of data and
algorithms to imitate the way that humans learn, gradually
improving its accuracy" [71]. This section gives a brief
introduction to various ML techniques and concepts that are
used to build ML-based MDSs. Figure 7 summarizes these
techniques and concepts. This section is divided into three
subsections: traditional learning, Deep Learning (DL), and
advanced ML concepts.

24.1

Traditional learning refers to ML algorithms not based on
DL, as explained in the following section.

Traditional learning

2.4.1.1 Supervised learning

It is an ML approach that leverages labeled datasets to train
or “supervise” algorithms in classifying data or predicting
outcomes. Supervised learning can be separated into two
types of problems: classification and regression:

o Classification problems use an algorithm to clas-
sify data into specific categories. For example, the
problem of classifying safety messages into two
groups: malicious or normal. Common classification
algorithms are Naive Bayes (NB), Logistic Regres-
sion (LR), Support Vector Machine (SVM), K-Nearest

Neighbors (KNN), Random Forest (RF), Artificial
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Neural Network (ANN), Extra Tree (ET), AdaBoost,
Decision Stump, Ensemble learning (bagging, boost-
ing, stacking), XGBoost, Light Gradient Boosting Ma-
chine (LGBM), Instance-Based Learning (IBL), and
Ensemble voting.

Regression problems use an algorithm to predict real
or discrete input variables. For example, predicting a
trust value of a V2X node or the number of attackers
in the 5GB-V2X network. Common regression algo-
rithms are linear and polynomial.

2.4.1.2 Unsupervised learning

In contrast to supervised learning, unsupervised learn-
ing uses unlabeled datasets for finding patterns that help
understand data structure. Unsupervised learning can be
classified into three types of problems: anomaly detection,
clustering, and dimensionality reduction.

o Clustering is commonly used to organize data into
groups that are easier to comprehend and manage.
Common clustering algorithms are k-means, hierar-
chical, and Gaussian mixture models.

Anomaly detection consists in identifying unex-
pected items or events in the dataset without any
prior knowledge. Common anomaly detection algo-
rithms are Elliptic Envelope Algorithm, Isolation For-
est Algorithm, One-class SVM Algorithm, Singular
Spectrum Transformation (SST), and Local Outlier
Factor (LOF) Algorithm.

Dimensionality reduction consists of transforming
data from a high-dimensional space into a low-
dimensional space while preserving some necessary
information quantity from the original data. Com-
mon dimensionality reduction algorithms are Princi-
pal Component Analysis and Missing Value Ratio.

2.4.2 Deep learning

Deep learning is a subset of ML that is based on ANN.
"Deep" refers to the number of hidden layers required to
train ML models. The DL algorithm outperforms ML algo-
rithms, especially in large data sets with a huge number of
features and rows. DL algorithms have enabled advances
in several applications such as computer vision, natural
language processing, and machine translation. DL is offer-
ing efficient learning algorithms for both supervised and
unsupervised tasks.

2.4.2.1 Supervised learning

Convolutional Neural Networks (CNN) and Recurrent Neu-
ral Networks (RNN) are the more common DL learning
algorithms:

CNN: are specialized DL algorithms designed for
computer vision applications. CNN architectures
take images represented as a matrix of pixels. CNN
combines traditional layers in ANN with more
sophisticated operators such as convolution and
polling operators to learn fine-tuned features from
the figures.
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Fig. 7: Taxonomy of the machine learning algorithms

« RNN: RNNs are DL algorithms addressing prob-
lems involving data sequences or time series such
as speech recognition, natural language processing,
and language translation. RNNs are inter-connecting
learning nodes enabling a kind of memory that
takes knowledge from previous data sequences to
influence the current data sequence and the output.
Several advanced RNN architectures are proposed,
such as Long Short-Term Memory (LSTM) and Gated
Recurrent Units (GRUs).

2.4.2.2 Unsupervised learning algorithms

o Autoencoder is an unsupervised deep learning algo-
rithm that uses a neural network architecture with a
tiny bottleneck layer in the middle that contains the
input data’s encoding representation to reconstruct
the input data in the output. Specifically, the autoen-
coder consists of (i) the encoder that compresses the
data inputs to encoding presentation with a smaller

size than the input and (ii) the decoder that takes
the encoding representation and tries to reconstruct
the input data. In unsupervised anomaly detection,
Autoencoders aim to minimize the reconstruction
error as part of their training. The reconstruction loss
is used to detect the anomalies.

2.4.3 Advanced ML concepts
2.4.3.1 Federated learning (FL)

FL is a distributed ML technique enabling collaboration
between multiple nodes to build a global model without
sharing their data sets collaboratively. The training of the
global model is performed within several rounds until the
FL server achieves a satisfactory global model. The FL server
sends the global model to a set of selected nodes in each
round. Each learning node uses its local labeled dataset to
calculate its local updates of the global model. At the end
of the round, all the selected learning nodes send their local
updates to the FL server. Once all the updates are received,



the FL server aggregates local updates for calculating the
new global model.

2.4.3.2 Reinforcement learning

It is a type of goal-oriented learning that trains models on
how to achieve specified goals while maximizing outcomes
over time. It is based on rewarding positive behaviors while
penalizing those that are undesirable. Reinforcement learn-
ing agents can perceive and interpret their surroundings,
taking actions and learning through trial and error. Deep re-
inforcement learning combines reinforcement learning with
DL.

2.4.3.3 Transfer learning

It is an ML technique that exploits the knowledge gained by
solving a given problem to apply it to another related prob-
lem. For example, the knowledge acquired from learning to
detect DoS attacks could be used to detect DDoS attacks.

2.4.34 Semi-supervised learning

It is similar to supervised learning, but the training process
combines a small amount of labeled data with a large
amount of unlabeled data during training. Semi-supervised
is usually used where unlabeled data is accessible but la-
beled data is hard to obtain.

2.4.3.5 Generative Adversarial Networks (GAN)

GAN is a deep learning network that can create data similar
to the input data. It consists of two networks that train
together: (i) Generator: which generates data with similar
characteristics as the training data, and (ii) Discriminator:
which attempts to categorize observations as "real" or "cre-
ated" given data comprising observations from both the
training data and producing data from the generator.

2.4.3.6 N-shot learning

N-shot learning is an ML sub-area that classifies new data
based on zero or only a few supervised training samples.
N-shot learning is the general concept where N is the num-
ber of used training samples. As a result, three particular
cases could be identified: (i) zero-shot learning, (ii) one-shot
learning, and (iii) few-shot learning. Zero-shot learning aims
to classify unseen classes without any training examples,
while one-shot learning needs only one sample of each class,
and two to five samples per class are required for few-shot
learning [72].

2.4.3.7 Online learning

As part of ML, online learning enables learning from
progressively arriving data. Unlike offline learning, online
learning methods allow updating ML models progressively
with one data point at a time. In other words, each online
learning stage is quick and allows the ML model to adapt
to new knowledge in real time. Moreover, online learning
is helpful, especially when computing resources are limited
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since storing training samples is not required after learning
them, saving considerable storage space.

2.5 Development and Evaluation

This subsection describes different elements used to develop
and evaluate ML-based MDSs. As depicted in Figure 8, these
elements include public datasets, network simulators and
emulators, and evaluation metrics.

Evaluation
Metrics
Development Public
and Evaluation dataset

Network
simulators
and
emulators

Fig. 8: Cornerstones of the development and evaluation of
ML-based MDSs

2.5.1 Public datasets

Several public security datasets have been used to build
ML-based MDSs. These datasets are briefly described in the
following.

2.51.1 VeReMi

VeReMi [73, 74] is a simulated dataset generated using
simulation tools such as OmNeT++ and Veins. Five types of
position falsification were implemented. i) Constant: which
consists in broadcasting fixed positions; (ii) Constant offset:
which consists in broadcasting a fixed offset added to the
real positions; (iii) Random: which consists of broadcast-
ing random positions belonging to the simulated area; (iv)
Random offset: which consists in broadcasting random po-
sitions that belong to a rectangle around the vehicle; and (v)
Eventual stop: in which the attacker behaves normally for
some time and then attacks by broadcasting a fixed position
for a period. This dataset is generated for different traffic
densities and different attacker radios.

2.5.1.2 VeReMi extension

VeReMi extension [75, 76] is also a simulated dataset gen-
erated using the Framework For Misbehavior Detection [77,
78], which is based on OmNeT++ and Veins. This dataset
represents an extension of VeReMi implementing nine types
of attacks: (1) Position falsification (constant, random, con-
stant offset, and random offset); (2) Speed Malfunctions



(constant, random, constant offset, and random offset); (3)
Delayed Messages; (4) DoS attacks; (5) DoS Random; (6)
Data Replay; (7) Disruptive; (8) Eventual Stop; (9) Traffic
congestion Sybil.

2.51.3 DARPA

DARPA [79, 80] are popular intrusion detection datasets
created using an emulated network environment at the MIT
Lincoln Lab. They implement attacks on authentication such
as scanning attacks, User-to-Root (U2R), and Remote-to-
Local (R2L) attacks. They also implement attacks on avail-
ability like DoS attacks.

2.5.14 CAIDA DDos2007

CAIDA DDos2007 [81] includes approximately one hour of
traffic traces from a DDoS attack (UDP flooding) attempt-
ing to block access to a server by consuming computing
resources on the server and all of the bandwidth of the
network connecting the server to the Internet. The traces
only includes attack traffic to the victim and responses to
the attack from the victim.

2.5.1.5 AWID 2

AWID 2 [82, 83] dataset implements popular attacks on
802.11 generated based on a small testbed. It includes vari-
ous attacks on authentication (e.g., ARP injection), availabil-
ity (e.g., Request To Send (RTS) beacon), and confidentiality
(e.g., rogue access point). The AWID dataset comprises
packets of different sizes captured at different times, with
various equipment,, and in different environments. Each
trace includes 154 features and a label indicating whether
the trace is benign or an attack.

2.51.6 KDD CUP 99

KDD CUP 99 [84] is a popular intrusion detection dataset
proposed in an international competition aimed at building
a predictive model that can distinguish between normal and
malicious network traffic. KDD CUP 99 includes 23 attacks
on authentication and availability, such as R2L, probing
attacks, DoS, and U2R simulated in a military network
environment.

2.5.1.7 NSL-KDD

NSL-KDD [85, 86] dataset includes the same attacks as the
KDD CUP 99. It mainly came to enhance the KDD CUP 99
by removing duplication and creating more sophisticated
sub-datasets. Specifically, unlike KDD CUP 99, NSL-KDD
does not include redundant traces in the train and test
datasets, which helps eliminate bias toward more frequent
records.

2.5.1.8 Kyoto

Kyoto [87, 88] is a honeypot dataset that contains real
packet-based traffic converted into a new format called
sessions. Each session comprises 24 features, 14 of which are
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inspired by the KDD CUP 99 dataset. The remaining 10 are
flow-based features such as IP addresses, ports, or duration.

2.5.1.9 UNSW-NB15

UNSW-NB15 [89, 90] has been created in a small emulated
environment over 31 hours. The dataset includes raw net-
work packets. The number of records in the training dataset
is 175,341 records, and the test dataset is 82,332 records
from the different types (normal and attack). Specifically,
It includes nine attacks, such as backdoors, DoS, exploits,
fuzzes, or worms.

2.5.1.10 ISCX 2012 IDS

ISCX 2012 IDS [91] has been generated using a small
testbed within seven days of network activity (normal and
malicious). It consists of labeled network traces, including
full packet payloads. Specifically, it includes attacks such
as infiltration, HyperText Transfer Protocol (HTTP), DoS,
DDoS, and brute force SSH.

2.5.1.11 CICIDS2017

CICIDS2017 [92, 93] has been created within an emulated
environment for five days. It is generated with realistic
traffic background abstracting behavior of human interac-
tions and generating naturalistic benign background traffic.
It contains a wide range of attack types like SSH brute force,
heartbleed, botnet, DoS, DDoS, web, and infiltration attacks.

2.51.12 CRAWDAD (mobiclique)

CRAWDAD (mobiclique) [94] includes the traces of Blue-
tooth encounters, opportunistic messaging, and social pro-
files of 76 users of the MobiClique application at SIGCOMM
2009. Specifically, each device performs a periodic Bluetooth
discovery to discover nearby devices and records the results
of the discovery and all data communications. Moreover,
the devices record details of the user’s social profile, its
evolution, and application-level messaging.

2.5.1.13 NGSIM trajectory datasets

The NGSIM program [95] collected high-quality traffic
datasets at four different locations in the United States,
including two freeway segments and two arterial segments,
between 2005 and 2006. The datasets collected and
generated for each location include longitudinal and lateral
positioning information for all vehicles in certain regions.

Table 5 shows the types of security attacks provided by
each of the security datasets concerning security services
described in the subsection 2.2.1. It is worth mentioning that
any dataset includes attacks on non-repudiation. In addi-
tion, as can be seen, the table does not include CRAWDAD
(Mobiclique) and NGSIM trajectory datasets since they do
not initially include attacks. Still, the authors use them after
pre-processing, like injecting noise.



TABLE 5: The security services targeted by the attacks
included in the datasets used to build ML-based MDSs

Authentication
Availability
Confidentiality

Dataset

VeReMi

VeReMi extension
DARPA

CAIDA DDos 2007
AWID2

KDD CUP 99
NSL-KDD

Kyoto
UNSW-NB15
CICIDS2017

x| | Integrity

>
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2.5.2 Network simulators and emulators

Several network simulators have been used to generate
customized security datasets. These network simulators are
described in the following.

2.5.2.1 Objective Modular Network Testbed in C++ (OM-
NeT++)

OMNeT++! is a modular, component-based C++ simulation
library and framework, primarily for building network sim-
ulators. OMNeT++ itself is a simulation framework without
models for network protocols like IP or HTTP. The main
computer network simulation models are available in sev-
eral external frameworks.

2.5.2.2 Simulation of Urban MObility (SUMO)

SUMO? is a microscopic mobility simulator. It allows for
building realistic traffic and mobility models for various
application areas. It supports modeling pedestrians, bicy-
cles, passenger cars, trucks, buses, trains, and even ships.
SUMO includes many tools for the creation, execution, and
evaluation of traffic simulations, such as network import,
route calculations, and visualization. SUMO also provides
various modules to remotely control the simulation.

2.5.2.3 Veins

Veins® is an open-source framework for running vehicular
network simulations. It is based on two well-established
simulators: OMNeT++ and SUMO. It extends these to offer a
comprehensive suite of models serving as a modular frame-
work for simulating V2X applications. Each model includes
one or more OMNeT++ models, which can be instantiated
to provide the required simulation functionalities.

1. https:/ /omnetpp.org/
2. https:/ /www.eclipse.org/sumo/
3. https:/ /veins.car2x.org/
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2.5.24 PLEXE

PLEXE* is a cooperative driving framework extending
SUMO and Veins, allowing realistic simulations of vehicle
platooning systems. It offers realistic vehicle dynamics and
several cruise control models, enabling control systems anal-
ysis, large-scale and mixed scenarios, networking protocols,
and cooperative maneuvers.

2.5.2.5 Network Simulator Version 2/3 (NS2/NS3)

NS2/NS3° is an open-source event-driven simulator ex-
plicitly designed for research in computer communication
networks. It simulates wired and wireless networks, con-
sidering protocols such as TCP, FTP, UDP, and HTTP. NS3
is an extension of NS2, focusing on improving the core
architecture, software integration, and model components.

2.5.2.6 VanetMobiSim

VanetMobiSim® is an extension of the CANU Mobility Sim-
ulation Environment (CanuMobiSim) supporting vehicular
mobility and features new realistic automotive motion mod-
els at macroscopic and microscopic levels. According to
these models, vehicles regulate their speed depending on
nearby vehicles, overtake each other and act according to
traffic signs in the presence of intersections.

2.5.2.7 CTUns-5.0

CTUns-5.0 [96] is a high-fidelity and extensible network
simulator that can test various protocols and topologies
used in wired and wireless IP networks. It also provides a
framework to develop simulations for evaluating advanced
V2V and V2I applications. It also supports simulating multi-
interface mobile nodes equipped with multiple heteroge-
neous wireless interfaces.

2.5.2.8 GloMoSim (Global Mobile Information System
Simulator)

GloMoSim [97] is a network simulation software that can
simulate large-scale wired and wireless in different con-
figurations enabling several use cases like mobile ad-hoc
networks. GloMoSim supports protocols for purely wireless
networks and works using parallel discrete event simulation
capabilities.

2.5.2.9 Mininet

Mininet” is a network emulator which creates a network of
virtual hosts, switches, controllers, and links. Mininet hosts
run standard Linux network software, and its switches sup-
port OpenFlow [98] for highly flexible custom routing and
SDN. Mininet was used to design under-attack SDN V2X
scenarios by creating OpenFlow devices, including flow
tables, and defining SDN rules. Mininet-Wireless Fidelity
(WiFi) is an extension of Mininet, which allows the using

4. https:/ /plexe.car2x.org/
5. https://www.nsnam.org/
6. http:/ /vanet.eurecom.fr/
7. http:/ /mininet.org/



WiFi stations and access points. Two surveyed papers have
exploited Mininet-WiFi to generate datasets by extracting
information from SDN network flows.

2.5.2.10 RDS1000

RDS1000 is a simulation platform that may serve for re-
search, training, or automotive product development. It
has real-vehicle equipment with a customizable virtual
dashboard. RDS-1000 offers an actual steering wheel with
control, loaded steering, real accelerator, and brake pedals
[99].

2.5.3 Evaluation metrics

Various evaluation metrics have been used to evaluate ML-
based MDSs. The following gives the calculating formula
for each metric with a short description.

Accuracy is the ratio of the correctly detected attack-
ers to the total of vehicles.

TP+TN ()
TP+TN+FP+FN

True Positive (TP) is the number of cases
correctly identified the attacks.

False Positive (FP) is the number of cases
incorrectly identified the attacks.

True Negative (TN) the number of cases cor-
rectly identified the benign events.

False Negative (FN) is the number of cases
incorrectly identified the benign events.

Accuracy =

Precision calculates the ratio of correctly detected
attacks to the total detected attacks.

TP
TR @
TP+FP

Recall calculates the ratio of correctly detected at-
tacks to the total actual attacks.

Precision =

TP
TP+FN ®)
Fl1-score can be interpreted as a weighted average of
precision and recall.

Recall =

Precision = Recall
F1 — score =2X

4)

True Positive Rate (TPR), so-called also Sensitivity,
is the proportion of attacks which has a positive
detection result.

Precision + Recall

TP
TP+ FN ©)
True Negative Rate (TNR), so-called also Specificity

is the proportion of benign events which has a nega-
tive detection result.

TPR =

TN
" FP+TN ©)
False Positive Rate (FPR) is the proportion of benign
events, which has a positive detection result.
_ FP
" FP+TN

TNR

FPR ?)
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False Negative Rate (FNR): is the proportion of
attacks which has a negative detection result.

FN
TP+ FN ®

The Receiver Operator Characteristic (ROC) curve
shows the trade-off between sensitivity and speci-
ficity. Classifiers with curves that are closer to the
top-left corner perform better.

The Area Under the Curve (AUC) is used as a
summary of the ROC curve. It measures the ability
of a classifier to distinguish between classes.

FNR =

3 ML-BASED MISBEHAVIOR DETECTION SYs-
TEMS: A TAXONOMY

This section reviews different ML-based MDSs proposed
in the literature. It classifies the proposed ML-based MDSs
into three categories: (i) ML-based MDSs for Non-IP-based
(safety) applications: that mainly detect attacks on the fa-
cilities layer; (ii) ML-based MDSs for IP-based (non-safety)
applications: that mainly detect attacks on the transport and
networking layers; and (iii) ML-based MDSs that can be
used for both: that mainly detect attacks on the physical
layer. Each category is divided into subcategories according
to the attack detected by the ML-based MDS as shown in
Figure 9.

3.1

This category includes ML-based MDSs detecting position
falsification, false information, Sybil, position tracking, and
multi-attacks. The false information subcategory can com-
prise the position falsification subcategory. However, this
subsection categorized them separately due to the important
works on position falsification. In addition, the multi-attack
category includes ML-based MDSs that can detect two or
more attacks.

Non-IP-based V2X applications

3.1.1 Position falsification

So et al. [100] proposed an ML-based MDS that can detect
position falsification attacks. The proposed system built a
supervised learning model based on the VeReMi dataset.
The authors considered six features for the training: (1) loca-
tion plausibility check; (2) movement plausibility check; (3)
average distance between the first received beacon and the
final received beacons; (4) average velocity between the first
received beacon and the final received beacon; the feature
(5) is the magnitude of features 3 and 4; finally, the feature
(6) is the total displacement between two received messages.
Moreover, they used two ML algorithms (SVM and KNN)
to train their model, which was evaluated using precision
and recall metrics. Le et al. [101] also proposed a supervised
learning-based MDS based to detect position falsification
attacks. The paper leverages comparing the trajectory of
vehicles with the trajectories of legitimated vehicles. The
authors proposed three features to compare the trajectories:
(i) movement plausibility check: which checks if their posi-
tions changed between two consecutive messages received
from the same vehicle; (ii) minimum distance to trajectories:
which measures the similarity between observed trajectories
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Fig. 9: Taxonomy of ML-based Misbehavior Detection Systems

and legitimate trajectories; and (iii) minimum translation
distance to trajectories: which checks if any offset was added
to received positions. Based on the proposed features, the
paper trains a multi-class classifier on the VeReMi dataset
to detect five false position attacks. The authors tested two
classification algorithms (SVM and KNN) based on MAT-
LAB implementation and evaluated the model using preci-
sion and recall. Singh et al. (1) [102] proposed a supervised-
based MDS to detect position falsification attacks. They
trained the system based on the VeReMi dataset. Three
combinations of features were tested (i) (position, speed)
(ii) (position + A position (between the sender and the
receiver), and (iii) (position, speed, A position, A speed). The
authors tested two ML algorithms (SVM and LR) for binary
classification and evaluated the system using the Fl-score.
Sharma et al. (1) [103] proposed an ML-based MDS to detect
position falsification attacks. The proposed system combines
plausibility checks with ML models. They trained the sys-
tem on the VeReMi dataset based on a supervised learning
approach. The authors selected four features for the training;:
position coordinates (x,y) and speed coordinates (v, vy).
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They compared six ML algorithms (SVM, KNN, NB, RF,
ensemble boosting, and ensemble voting) and evaluated the
system using accuracy, precision, recall, and F1-score. Kos-
manos et al. [104] proposed a supervised approach to detect
position falsification attacks. The ML model was based on
a binary classification and was trained based on a dataset
generated using the Veins network simulator. The authors
selected four features for the training (i) the signal strength
indicator; (ii) the signal quantity indicator; (iii) the packet
Delivery Ratio (PDR); and (iv) the position verification using
relative speed, which is a position verification check based
on the speed and the GPS position. Moreover, they tested
two classification algorithms (KNN and RF) and evaluated
the system using FPR, TPR, and ROC. Montenegro et al.
[105] proposed an ML-based MDS for detecting position fal-
sification attacks based on a supervised learning approach.
The authors implemented four types of position falsification
attacks using the Veins simulator. The trust value is the
only feature considered for the training. The trust value is
calculated based on the weighted sum of the normalized
speed and the normalized received power. In addition, the



paper built a binary classifier based on KNN and evaluated
it using accuracy, recall, TPR, and FPR metrics. Ecran et
al. (1) [106] proposed a supervised learning approach to
detect position falsification attacks. They trained the system
based on the VeReMi dataset and selected two combinations
of features: (i) Received Signal Strength and Interference
(RSSI), position, the distance between sender and receiver,
A position of the sender, the estimated Angle of Arrival
(AoA), the estimated distance between the sender and the
receiver), and (ii) (Position, the distance between sender
and receiver, estimated AoA, estimated distance between
sender and receiver). Moreover, they used ML algorithms
(KNN and RF) to build a binary classifier and evaluated it
using precision, recall, accuracy, and F1-Score. The authors
proposed an extension of this work in Ecran et al. (2) [107].
Unlike their previous work, they trained multi-class clas-
sifiers instead of binary classifiers. In addition, they tested
ensemble learning by combining KNN and RF. Hawlader
et al. [108] proposed an ML-based MDS based on a super-
vised learning approach. They trained binary and multi-
class classifiers on the VeReMi dataset and selected twenty
features for training based on the difference in positions sent
by vehicles. They also used six ML algorithms (SVM, DT,
RE, KNN, NB, and LR) for building the models. Moreover,
they evaluated the models using accuracy, precision, recall,
and Fl1-score metrics and validated them using simulations.
Okamura et al. [109] proposed unsupervised anomaly-based
MDS that detects position falsification attacks. They imple-
mented four types of position falsification attacks similar to
the ones presented in VeReMi using the Scenargie network
simulator. The authors proposed to deploy their MDS on
the cloud. The MDS leverages SST-based transformed time
series of positions to detect attacks. Moreover, the authors
evaluated their solution using precision, recall, and F1-score.
Grover et al. (1) [110] proposed an unsupervised anomaly
detection MDS to detect position falsification attacks. They
used the VeRemi dataset for training and comparing several
ML models: GRU (1 layer), LSTM (1 layer with changing
the number of neurons), and stacked LSTM by changing the
number of the layers from 2 to 5. The authors evaluated
their ML models using accuracy and recall and suggested
deploying them on the edge nodes. Sedar et al. [111] pro-
posed an ML-based MDS based on reinforcement learning
to detect sudden-stop (eventual stop) attacks, which is a
specific type of position falsification attack. The authors
used the VeReMi extension dataset to train their model
based on one feature (position/speed) and evaluate it using
precision, recall, and Fl-score metrics. Uprety et al. [112]
leveraged FL to propose privacy preservation collaborative
ML-based MDS for position falsification attacks. The au-
thors used the VeReMi dataset and selected four features
for the training. The first two features are the difference
between calculated average velocity and predicted ones in
x and y directions, respectively. Feature 3 is the magni-
tude of features 1 and 2. The last feature is the difference
between the calculated and predicted total displacement.
The evaluation metrics were precision and recall. Sharma
et al. (2) [113, 114] proposed a supervised-based MDS to
detect position falsification attacks. The authors used the
VeReMi dataset and selected features for training, including
position and speed features from two consecutive beacons.
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They trained binary and multi-class classifiers to detect the
attacks based on several ML algorithms (KNN, RF, NB,
and DT). Finally, they evaluated the ML classifiers using
several metrics, including precision, recall, and Fl-score.
Mankodiya et al. [115] proposed a supervised-based MDS
to detect position falsification attacks. They built a binary
classifier based on the VeReMi dataset selecting six features
for training consisting of (X, Y, Z) coordinates of position
and speed. They also used three ML algorithms (RF, DT, and
AdaBoost) for the training and evaluated the classifier using
precision, recall, and Fl-score metrics. Recently, Aliev et al.
[116] proposed an ML-based MDS for detecting position
falsification attacks. The authors used VeReMi to train a
multi-class classifier based on a multi-head DL architecture
consisting of multiple CNN networks stacked with an LSTM
network. They first trained every CNN network based on
speed and position data generated by only one vehicle.
After this stage, they concatenated all output layers of CNN
networks to serve as an input for the LSTM network. Finally,
they used the accuracy to evaluate the system.

3.1.2 False Information

Ghaleb et al. [117] proposed an ML-based MDS to detect
data injection. The mobility traces were extracted for the
NGSIM dataset and replayed in MATLAB. The authors
implemented the data injection attack by injecting dynamic
noise where 20% of vehicles are considered malicious. They
also trained an ML model using seven features: (1) over-
laying check; (2) consistency of reported uncertainties; (3)
mobility message prediction error; (4) communication-based
feature; (5) appearance position-based features; (6) average
mobility messages prediction error, (7) the time to last
received mobility message. The paper adopted a supervised
approach based on ANN and evaluated the ML model using
accuracy, Fl-score, recall, and precision metrics. Monteuuis
et al. [118] proposed supervised learning-based MDS to de-
tect the absence of correlation between the type V2X entity
and the dimension of the vehicles. Open datasets about
cars, motorcycles, and pedestrians were collected from the
internet and processed (data cleaning and feature reduction)
for training and evaluation. Three features were selected: the
width, length, and type of V2X entity. The authors generated
misbehaviors by injecting noise into the dataset. They also
used three ML algorithms (ANN, AdaBoost, and RF) and
several metrics for the evaluation, including TPR, TNR, FPR,
FNR, accuracy, and Fl-score. Singh et al. (2) [119] proposed
an ML-based MDS for detecting malicious infrastructure
nodes reporting false information to the traffic management
center. They generated their dataset using SUMO. Their
system consists of ML models built using ANN and LSTM
to predict traffic congestion (the halt time in traffic segment)
based on loop detectors’” data. The information reported
by the infrastructure nodes was compared with the output
of the proposed model to detect the attack. Gyawali et
al. [120, 121] proposed an ML-based MDS for detecting
false alert and position falsification attacks. The authors
trained a binary classifier to detect false alert attacks based
on the difference between the average flow value and the
received flow value from the vehicles. The flow value is
calculated based on the density of vehicles and the average
speed of vehicles. The dataset for this attack was generated



using the Veins simulation platform. On the other hand,
the authors trained a multi-class classifier to detect posi-
tion falsification attacks based on the VeReMi dataset. The
considered features were the change in speed and position
between two consecutive beacons, the receiving distance,
the RSSI, and its speed and position. The paper used sev-
eral classification algorithms (LR, KNN, DT, Bagging, and
RF) and evaluated the models using precision, recall, and
Fl-score metrics. Negi et al. [122] proposed an anomaly
detection-based MDS. The proposed system leverages an
unsupervised learning approach based on LSTM. The au-
thors generated datasets from experiments performed on a
treadmill-based autonomous car simulator at the University
of Waterloo. This system focus on detecting anomalies in
big data generated by CAVs rather than focusing on V2X
attacks. To speed up the training process, a cluster of
servers is used instead of one server. After the training, the
anomaly detection model is distributed to vehicles for the
real-time detection of anomalies. The model was retrained
over time based on newly collected data, and the new
model’s parameters were distributed to vehicles to keep the
model updated. AUC was used as an evaluation metric.
Almalki et al. [123] proposed a supervised-based MDS to
detect false data inject attacks. The authors proposed to
take several contextual data in addition to data collected in
real-time for attack detection. The authors used the NGSIM
dataset, which contains data acquired from the environment
using a set of sensors. In this MDS, data undergo several
pre-processing steps, including missing values imputation
based on the local and global fuzzy-clustering correlation
approach. The ML models were trained using LR, SVM,
and CNN. Accuracy, Fl-score, Detection Rate (DR), and FPR
were used as evaluation metrics. Ko et al. [124] proposed a
supervised-based MDS to detect false information attacks
in Cooperative Adaptive Cruise Control (CACC) for CAVs
platooning. More specifically, these attacks falsify speed
and acceleration to destabilize the platoon. The authors
proposed to deploy an ML-based MDS on each platooning
vehicle to detect attacks. They used a dataset generated
from PLEXE platooning simulator. They trained their model
based on the information received by the ego vehicle from
three predecessor vehicles in the platoon. This information
consists of speed, acceleration of the predecessor vehicle,
the time difference between the generation of the message
at the preceding vehicle, and the local time of the ego
vehicle. The built ML model was a binary classifier trained
based on LSTM and evaluated using accuracy and Fl-score.
Boddupealli et al. (1) [125] proposed an unsupervised-based
MDS to detect false acceleration values in CACC. They
trained their model based on a dataset generated using
the RDS1000 simulator. Their dataset considers various sim-
ulation environments: (1) three road typologies (highway,
suburban, and city), (2) four weather parameters (rain,
snow, clear, and windy), and (3) two diurnal parameters
(day and night). They trained their ML model to detect
anomalies only based on normal data. The model was built
using the ANN algorithm and evaluated using FP and FN
metrics. Wang et al. [126] proposed an unsupervised-based
MDS to detect false information in CACC. Their ML model
considers three types of stealthy attacks. The first attack
adds a constant to the velocity of the leading vehicle, while
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TABLE 6: Specification of the type of false information
detected by ML-based MDSs

False information

Dimension and type
Brake status & Steering angle

Position
Velocity
Acceleration
Road traffic

| Not specified
Alert

Ghaleb et al. [117]

Monteuuis et al.
[118]

Singh et al. (2)
[119]

Gyawali et al.
[120, 121]

Negi et al. [122]

Almalki et al.
[123]

Ko et al. [124]

Boddupealli et al.
(1) [125]

Wang et al. [126]

Boddupalli et al.
(2) [127]

Sarker et al. [128]

Ayoob et al. [129]

the second attack multiplies it by a constant. The third attack
adds an offset to position, velocity, and acceleration. The
authors trained two anomaly detection models on LSTM
and autoencoders, respectively. Their models took a dataset
generated using SUMO, consisting of temporal trajectory
windows. Each window consists of w vectors of trajectories.
Each trajectory vector consists of positions, velocities, and
accelerations of both ego and leading vehicles. The Fl1-
score was used as an evaluation metric while the system
was proposed to be deployed on the Roadside Unit (RSU).
Boddupalli et al. (2) [127] proposed an ML-based MDS to
detect false information (position and velocity) attacks in
CAVs platooning. Their system only detects attacks gener-
ated from followers. They used a dataset generated based
on the RDS1000 simulator. The system first predicts the
ego vehicle’s acceleration and compares it with the actual
acceleration value. The attack was detected if the difference
between the predicted and the actual acceleration values
was greater than a certain threshold. The RF regressor was
used for the prediction based on five features: the velocity
and the position of the ego vehicle, the velocity and the
preceding vehicle, and the leader’s velocity. Moreover, the
authors proposed deploying the system on vehicles. Sarker
et al. [128] proposed an ML-based MDS to detect false infor-
mation (velocity (v), acceleration (a), brake status (b), and
steering angle (0)) attacks. Their MDS predicts the current



driving state r(t) = (v(t), a(t), b(t), € (t)) of the vehicle based
on its previous driving states using a Gaussian mixture
model-based Mixture Density Network incorporating RNN.
The attack is detected by comparing the predicted driving
state with the actual driving state. The used dataset com-
bined a real driving dataset collected from 29 participants
and a simulated dataset generated using SUMO. In addition,
the authors proposed deploying the system on vehicles.
Precision and recall were used as evaluation metrics. Ayoob
et al. [129] proposed an ML-based MDS to detect false
information about road traffic and position. They used a
dataset generated based on NS2 collecting features about
the traffic flow characteristics and the deviation between
the position coordinate of the neighboring vehicle and the
measurement position. Then, they trained a binary classifier
based on ANN to detect attacks. Although their model
was not validated, they conducted experiments to compare
situations before and after the system’s deployment.

Table 6 summarizes the type of false information de-
tected by previously described ML-based MDSs. There
are seven types of false information: dimension and type
of vehicles, position, velocity, acceleration, brake status &
steering angle, alert, and road traffic. It can be seen that three
of the described ML-based MDSs do not explicitly specify
the type of detected false information.

3.1.3 Sybil

Gu et al. [130] proposed a supervised learning-based MDS
to detect Sybil attacks. They used a dataset generated using
SUMO. The driving patterns of vehicles were modeled as
matrices. Each matrix line contains five fields: time, location,
velocity, acceleration, and acceleration variation at time t.
The two max eigenvalues of the matrix were used as train-
ing features. The authors then built a binary classifier based
on SVM and ANN algorithms and used TPR, FPR, and
FNR as evaluation metrics. The same authors in [131] also
proposed a similar approach but used the KNN algorithm
for binary classification and the accuracy as an evaluation
metric instead. Kamel et al. (1) [132] proposed an ML-based
MDS for detecting Sybil attacks. They defined four types
of Sybil attacks: (i) Traffic Congestion Sybil, (ii) Data reply
Sybil, (iii) Dos Random Sybil, and (iv) Dos Disruptive Sybil.
Their solution consists of two systems: Local and global. The
authors proposed to deploy the local system at the vehicle
level, where a set of plausibility and consistency checks to
detect misbehavior and report it to the global system. The
latter was equipped with an ML-based MDS and placed
in the cloud. In addition, the authors trained their system
based on the VeReMi extension dataset. They used thirty
features to build the multi-class attack classifier based using
LSTM. Their classifier was evaluated using various metrics
such as Fl-score, recall, and precision. Quevedo et al. [133]
proposed an ML-based MDS for detecting Sybil attacks.
They adopted a supervised learning approach to build their
ML models, which are trained and deployed on edge nodes
for attack detection. Their collected data consists of a set of
matrices describing vehicles” driving patterns. The columns
of matrices are the features considered for learning. Each
row of a matrix contains vehicle driving information at time
t. The authors used an unsupervised learning technique
to reduce the dimensionality of matrices. They also used
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extreme ML for classification based on the dataset gener-
ated using SUMO containing between 1% and 20% Sybil
attackers. They also used accuracy as a metric to evaluate
their system.

3.1.4 Position tracking

Boualouache et al. [134] proposed an ML-based MDS for de-
tecting position-tracking attacks. The authors first identified
strategies that attackers can use to track vehicles without
being visually detected efficiently. The authors then gener-
ated a syntactic dataset to train the ML models based on
these strategies. Their MDS enables FL at the edge to ensure
collaborative learning while preserving the privacy of vehi-
cles. In addition, FL clients (vehicles) use a semi-supervised
learning approach for self-labeling. Furthermore, their FL
architecture used a DL model for binary attack classifica-
tion. Their results were compared with six traditional ML
algorithms: LR, KNN, SVM, NB, DT, and RF in terms of
precision, recall, F1-score, and accuracy.

3.1.5 Multi-attacks

Grover et al. (2) [135] proposed a supervised ML-based MDS
to detect six attacks: (i) Impersonation, (i) False position,
(iif) Combination of impersonation and false position, (iv)
greyhole, (v) reply, and (vi) timing. The authors generated
the dataset using the NCTUns-5.0 network simulator. After
that, they selected eleven features for training and building
the ML models: (i) position, (ii) acceptance range, (iii) speed
deviation, (iv) RSS, (v) packet transmitted, (vi) PDR, (vii)
packet drop ratio, (vii) packet capture ratio, (ix) packet
capture ratio, (x) packet collision ratio, and (xi) packet re-
transmission error ratio. Thus, they built and compared
binary and multi-class classifiers using five ML algorithms
NB, IBK, RF, DT, and Adaboost. The metrics are TPR, FPR,
TNR, and FNR. Grover et al. (3) [136] also proposed a similar
ML-based MDS in [135]. Their results demonstrated that
ensemble-based learning gives better results than in [135]
in the case of binary classification. Li et al. [137] (1) pro-
posed a supervised learning-based MDS to detect packet
dropping, packet modification, and RTS flooding attacks.
They generated the dataset using the GloMoSim network
simulator and selected three features to train the ML model:
Packet Drop Rate (PDrR), Packet Modification Rate (PMR),
and RTS flooding rate. The authors also considered using
other contextual information such as velocity, channel sta-
tus, temperature and wind speed, and GPS coordinates and
altitude. But this information is not used in the evaluation.
In addition, they built their binary classifier using the SVM
algorithm and evaluated it using precision and recall. Zhang
et al. (1) [138] proposed an ML-based MDS for detect-
ing false messages and message suppression. The dataset
was generated from simulations using the Veins simulation
framework. The authors selected five features to detect
false message attacks: (i) VehicleType, (ii) MessageType, (iii)
Reputation, (iv) The distance between the sender of the
message and the location of the event, and (v) Message
forwarding status. They also used four features to detect
suppression message attacks: (i) PDrR, (ii) Packet Delay
Forward Rate, (iii) PMR, and (iv) Packet Misroute rate. Thus,
they trained two binary classifiers for each attack based
on SVM, evaluated them using TPR, FPR, and accuracy,



and proposed deploying them on CAVs. Eziama et al. [139]
proposed an unsupervised-based MDS based on Bayesian
ANN that combines DL with probabilistic modeling. The
paper also described three attacks: timing, Sybil, and po-
sition falsification. However, the authors did not evaluate
the models. Mahmoudi et al. [140] proposed a supervised-
based MDS approach to detect attacks and multiple attacks
defined in the VeReMi extension dataset. Several training
features were used, including local detection, Kinematic
data, and generic features. The authors developed a multi-
class classifier based on five ML algorithms: RF, XGboost,
LightGBM, ANN, and LSTM, and evaluated their classifier
using various metrics: precision, recall, and F1-score. Kamel
et al. (2) [141] also proposed a supervised-based MDS to
detect multiple attacks defined in the VeReMi extension
dataset. The features considered for learning are almost
similar to the previous work [132]. The authors developed
ML models based on three ML algorithms: SVM, ANN, and
LSTM. The evaluation metrics are recall, precision, F1-score,
and accuracy. Alladi et al. (1) [142] proposed a supervised-
based to detect multiple attacks considered in VeReMi ex-
tension dataset. The authors used the messages of each
vehicle to generate sequences of 20 messages with 7 data
fields: position (X, Y), velocity (Vx,Vy), timestamp, pseudo-
id, and label. In addition, they built two multi-class classi-
fiers. The first one considers two classes: normal and attacks.
The second one considered position falsification attacks as
faults; thereby, three classes: normal, faults, and attacks. In
addition, the authors used two DL architectures: stacked
LSTM and CNN-LSTM. Based on these architectures, they
built different models and evaluated them using accuracy,
precision, recall, and Fl-score metrics. Alladi et al. (2) ex-
tended the previous work in [143]. The authors proposed a
similar supervised-based MDS and suggested deploying it
as a detection engine in the MEC. The authors considered
two detection methods: (1) Sequence Classification and (2)
Sequence-image classification. They developed two models
for sequence classification: (i) four stacked layers LSTM and
(i) CNN-LSTM. They also developed two models, CNN
and MLP, for sequence-image classification. Alladi et al.
(3) [144] proposed an ML-based MDS to detect the same
attacks considered in their previous works but based on
an unsupervised learning approach. They trained the ML
models only on normal data using the VeReMi extension
dataset. The considered DL architectures are similar to auto-
encoders that take sequences of 20 messages as input and
encode&decode them to reconstruct the normal traces. The
anomaly detection threshold was adjusted according to the
accuracy of reconstructing the normal trace. The authors
considered two models: Model 1 (CNN-LSTM) and Model
2 (stacked 4-layer LSTM). They used precision, recall, F1-
score, and accuracy metrics. Alladi et al. (4) also extended
this work by considering further models for enhancing
detection performance. Kushardianto et al. [145] proposed a
supervised-based MDS to detect multiple attacks. They used
the position and velocity features to train two ML models
based on the VeReMi extension dataset. The first model is a
binary classifier that detects attacks without specifying the
type. The second model is a multi-class classifier that deter-
mines the attack type. The authors used four ML algorithms
to build their classifiers: RF, LSM, GRU, and Deep Belief
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Network, and evaluated them using accuracy as a metric.
Gongalves et al. [146, 147] proposed an ML-based MDS to
detect DoS and false information (speed, acceleration, and
heading) attacks. They trained several multi-class classifiers
based on a dataset generated in their previous work [148].
Several features were used for the training, including po-
sition, speed, and heading. The proposed system has a
hierarchical architecture with four different levels. The first
level (vehicle) deploys a Decision Stump classifier, while the
second level is to forward messages from vehicles to RSUs.
The third level (RSU) deploys an RF classifier. Finally, the
fourth level (cloud) deployed an ensemble learning classifier
that combines ANN, DT, and RF. The authors evaluated
their system using accuracy, TPR, and TPR metrics.

Hsu et al. [150] proposed a supervised-based MDS to
detect attacks described in the VeReMi extension dataset.
The proposed ML model is a binary classifier based on
SVM and trained using eleven features. The authors di-
vided the features into four classes: (1) behavioral deviation,
(2) location plausibility, (3) velocity information, and (4)
comprehensive information. The main feature considered in
behavior deviation is the mean absolute error extracted from
the position reconstruction procedure based on a CNN-
LSTM model, very similar to the proposed in [110, 144, 149].
The authors evaluated the model using accuracy, precision,
recall, and F1-score and suggested deploying the system on
RSUs. Boddupalli et al. (3) [151] proposed an ML-based
MDS, deployable on vehicles, to detect multiple attacks
in CACC. These attacks are impersonation, greyhole, DoS,
jamming, and false information. The authors generated their
dataset based on the RDS1000 simulator. The authors used
the ANN to predict the acceleration based on the velocity
and acceleration of the preceding vehicle, the acceleration
of the ego vehicle, and the gap between the two vehicles.
Their system detects the attack if the difference between
the actual acceleration and the predicted one is greater
than a certain threshold. The authors evaluated the system
using recall, precision, Fl-score, and FPR metrics. Liu et
al. [152] proposed an ML-based MDS to detect DoS/DDoS,
Sybil, and replay attacks. The authors first simulated these
attacks using Veins. Then, they used two-stage multi-class
classification to build the ML model. In the first stage, they
employed four primary classification algorithms (KNN, DT,
AdaBoost, and RF), while in the second stage, they used LR
as a secondary classifier. More specifically, they trained four
primary classifiers based on 5-fold cross-validation. After
that, the results were aggregated and passed to the second
classifier. They also evaluated their system using accuracy,
precision, recall, and F1-score metrics. Sedjelmaci et al. [153]
proposed a hybrid MDS combining ML and rules-based
methods. The authors generated a dataset using the NS3
simulator, consisting of information about PDrR, Packets
Sent Ratio, Message Duplication Ratio, and Signal Strength
Intensity. The proposed system trains a binary classifier
based on SVM to detect DoS, Sybil, greyhole/Blackhole, and
wormbhole attacks. The authors evaluated their system using
the DR and FPR as metrics. Zeng et al. (2) [154] proposed
an ML-based MDS to detect Sybil and DDoS attacks. The
authors built their model using a dataset generated using
the Ns3 simulator. They also used stacked DL architecture
combining CNN and LSTM for building their multi-class



TABLE 7: Specification of attacks detected by multi-attack ML-based MDSs for non-IP-based applications
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Alladi et al. (2) [144] X X X[ X | X | X
Alladi et al. (3) [143] X X X[ X | X | X
Alladi et al. (4) [149] X X X[ X | X | X
Kushardianto et al. [145] X X X | X | X | X
Gongalves et al. [146, 147] X X
Hsu et al. [150] X X X[ X | X | X
Boddupealli et al. (3) [151] X X X | X
Liu et al. [152] X | X[ X
Sedjelmaci et al. [153] X | X X X
Zeng et al. (2) [154] X | X X X

classifier models. The authors evaluated their system using
precision, F1-score, and recall metrics and proposed a mech-
anism to update ML models.

Table 7 summarizes the detected attacks of each pre-
viously described ML-based MDSs. These attacks include
position falsification, false information, DoS/DDoS, Sybil,
replay, timing, greyhole/blackhole, wormhole, and imper-
sonation.

3.2 IP-based V2X applications

This category includes ML-based MDSs detecting DoS, grey-
hole/blackhole, Sybil, Wormhole, and multi-attacks. The
multi-attack category includes ML-based MDSs that can
detect two or more attacks.

3.2.1 DoS

Tan et al. [155] proposed an unsupervised learning-based
MDS for detecting DoS attacks. In their paper, RSUs col-
lect vehicles’ traffic flow, defined as a sequence of packets
from the source to the destination. Each flow contains o
network packets with the corresponding time series. The
Agglomerate Hierarchical Clustering (AHC) was applied to
create clusters of similar traffic flows. In each step of the
clustering algorithm, the dynamic time wrapping distance
[156] is used to calculate the distance between the time
series of different traffic follow. The authors built their
model based on a Python-generated dataset and evaluated
it using the DR as a metric. Singh et al. (3) [157] proposed
a supervised learning-based MDS to detect DDoS attacks in
SDN-based vehicular networks. The authors built a binary
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classifier based on a dataset generated using the Mininet-
WiFi emulation tool. They also tested serval ML algorithms,
including LR, DT, NB, SVM, KNN, ANN, and Gradient
boosting. Finally, they evaluated their system using TP,
TN, FP, and FN metrics. Yu et al. [158] also proposed an
ML-based MDS for detecting DDoS attacks in SDN-based
vehicular networks. The paper suggested the integration
of OpenFlow [98] with vehicular networks with a focus
on DDoS. A set of features are extracted from an open
flow table to use for training a set of binary classifiers
based on TCP, UDP, and Internet Control Message Protocol
(ICMP). The authors built their models using SVM based
on well-known datasets, including DARPA, CAIDA, and
DDos2007. They also evaluated their system using the DR
metric. Sharshembiev et al. [159] proposed an unsupervised
learning-based MDS to detect DoS attacks. The authors
generated their dataset using the Veins simulation platform
and then used the entropy-based anomaly detection tech-
nique to detect attacks based on the generated network
flows. Finally, they evaluated their system using precision,
recall, and Fl-score as metrics. Narayanadoss et al. [160]
proposed an ML-based MDS to detect a type of DDoS
called Crossfire in SDN-based vehicular networks. Crossfire
attacks aim at isolating a specific region from the network
by launching coordinated flooding on the principal network
links. The authors generated a dataset implementing nor-
mal and under-attack scenarios based on Mininet-WiFi. In
addition, they trained a binary classifier using ANN, CNN,
and LSTM and evaluated it using accuracy, precision, recall,
and Fl-score metrics. The authors also suggested deploying



their system on top of the SDN controller to detect attacks
efficiently. Maglaras et al. [161] proposed an ML-based MDS
to detect DoS attack. They trained their system based on
a dataset generated by a customized network simulator.
The system leverages an unsupervised anomaly detection
method combining KNN with one-class SVM called K-
OCSVM. While accuracy was the evaluation metric, the
authors suggested installing this system on CAVs or RSUs.
Tian et al. [162] proposed an ML-based MDS to detect DoS
attacks in BUSNet, a virtual mobile backbone infrastructure
constructed using public buses. BUSNet consists of three
layers: (i) vehicles, (ii) buses, and (iii) RSUs. The proposed
ML-based MDS was installed on the backbone and used
an unsupervised anomaly detection method to detect the
attacks. The authors built their model using ANN based on
a dataset generated using NS2 and validated it using FP and
FN metrics. Nie et al. [163] proposed an ML-based MDS to
detect DoS/DDoS attacks. They employed several spatial
and temporal features to detect the attack. In addition,
they trained their model based on data generated using a
private testbed. Specifically, the authors used a CNN-based
anomaly detection method to train the model and TPR as an
evaluation metric.

3.2.2 Greyhole and blackhole

Gruebler et al. [164] proposed a supervised learning-based
MDS to detect blackhole attacks. The authors generated
a dataset based on NS2 and SUMO and selected fifteen
features for learning, such as payload size, type, IP source
and destination, and sequence number. They also trained a
binary classifier based on the ANN algorithm and evaluated
it using TP, TN, FP, and FN metrics. Alheeti et al. (1)
[165, 166] proposed a supervised learning-based MDS to
detect greyhole attacks. The authors generated the datasets
by simulating greyhole with an adapted version of the
AODV protocol on the NS2 simulator and SUMO. They also
selected fifteen features and performed feature fuzzification
to train two binary classifiers. In addition, they used two
classification algorithms (SVM and ANN) for training and
four metrics (accuracy, TP, TN, FN, and FP) for evalua-
tion. Zeng et al. (1) [167] proposed a multi-level ML-based
MDS for detecting greyhole/blackhole attacks. The pro-
posed system consists of two binary classification models.
The first binary classifier was an ANN deployed on the
RSU, while the second was an SVM classifier deployed on
the cluster head. The authors generated their dataset using
GlobMoSim, employed the techniques described in [164]
to extract the features, and adopted accuracy and DR as
evaluation metrics. Siddiqui et al. [168] proposed a hybrid
ML-based MDS that combines unsupervised and supervised
learning for detecting greyhole attacks. The authors used
CRAWDAD (mobiclique) dataset to extract three features:
similarity, familiarity, and PDR. After data prepossessing,
they applied an unsupervised technique for labeling. Then,
they trained a binary classifier using two classification
algorithms (KNN and SVM) and evaluated it using the
accuracy metric. Acharya and Oluoch [169] proposed a
supervised learning-based MDS to detect blockhole attacks.
They generated their dataset based on a modified version
of AODV implemented on the NS3 simulator. Then, they
selected seven features for the training: (i) source IP address,
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(ii & iii) source and destination ports, (iv) timeFirstRxpaket,
(v) timeLastRxPacket, (vi) lost packets, and (vii) throughput.
Finally, the authors trained a binary classifier using five ML
algorithms: NB, LR, KNN, SVM, and gradient boosting and
evaluated its performance using recall, precision, F1-score,
accuracy, FPR, FNR, and ROC_AUC score metrics.

Abdel Wahab et al. [170] proposed an ML-based MDS
to detect greyhole/blackhole attacks. They generated the
dataset using VanetMobisim and selected several features to
train the ML model, including the number of packets to be
forwarded and the number of packets forwarded. In addi-
tion, they built a binary classifier using SVM and validated
it using accuracy, DR, and FPR metrics. Shams et al. [171]
proposed an ML-based MDS to detect greyhole/blackhole
attacks. The authors trained a binary classifier based on
the dataset generated using the NS2 simulator. They also
selected several features for the training of the ML model,
including packet drop count, packet transfer delay, and
packet forward interval. Their model was built using SVM
and evaluated precision, recall, and Fl-score metrics. The
authors also proposed deploying the system on CAVs.

3.2.3 Wormhole

Singh et al. (4) [172] proposed a supervised learning-based
to detect wormhole attacks. They generated their dataset
using the NS3 simulator and selected several features to
train their ML models, including source and destination IP
addresses, transmitted and received Bytes, dropped Bytes,
FirstRxBytesTime, FirstTxBytesTime, and throughput. In ad-
dition, they trained a binary classifier using two ML algo-
rithms (KNN and SVM) and evaluated it using TP, TN, FP,
and FN metrics.

3.2.4 Multi-Attacks

Alheet et al. (2) [173, 174] proposed a supervised learning-
based to detect multiple attacks. The training was done
using the Kyoto dataset, which includes different attacks:
SQL, TCP, Malware, shellcodes, and exploit codes. The
authors also proposed a technique to reduce the number
of features. Using the ANN algorithm, they trained a multi-
class classifier to detect three classes: normal, known, and
unknown attacks. They also evaluated it using TP, TN, FN,
and FP metrics. Kim et al. [175] proposed an ML-based MDS
for SDN-based vehicular networks where CAVs analyze the
incoming traffic and forward selected data flows to the SDN
controller. Based on these data flows, the SDN controller
trains a multi-class classifier on the KDD dataset based
on SVM. The authors selected six features for the train-
ing: PDrR, PMR, RTS flooding rate, channel status, packet
interval, average packet interval in the flow, and packet
size. They also evaluated their model using accuracy, pre-
cision, and recall metrics. The trained model is forwarded
to vehicles, which use it to detect misbehavers. Zhang et
al. (2) [176, 177] proposed an ML-based MDS based on a
distributed ML approach. The authors assumed that each
vehicle has its own labeled data. Vehicles collaboratively
build the model without exchanging data sets between
them. Instead of sharing the data sets, the vehicles share
only updates of the loss functions. The authors proposed a
dual variable perturbation to provide dynamic differential
privacy to prevent privacy leakage. They trained a binary



classifier using LR based p, NSL-KDD dataset and used
the loss function output as an evaluation metric. Ghaleb
et al. [178] proposed a collaborative ML-based MDS for
multiple attacks. The system consists of four phases. In the
first phase, each vehicle builds its local model based on its
collected data. In the second phase, vehicles share models
according to the requests received from the neighbors. In the
third phase, vehicles evaluate the received models to detect
malicious models (nodes). Finally, in the last phase, vehicles
build a collaborative model based on the valid models
checked in the third phase. The authors used the NSL-KDD
dataset to train a binary classifier, leveraging three algo-
rithms (RF, XGBoost, and SVM). In addition, they evaluated
their model using accuracy, precision, recall, F1-score, FPR,
and FNR metrics. Ashraf et al. [179] proposed unsuper-
vised learning-based MDS for detecting multiple network
attacks. They trained their model based on the UNSW-
NB15 dataset, including exploits attacks, generic attacks,
DoS attacks, Fuzzer attacks, and Recon attacks. They also
used a statistical method to extract the features. Their model
was based on LSTM autoencoder architecture and evaluated
using several metrics, including precision, recall, accuracy,
Fl-score, and TPR. Shu et al. [180] proposed a collaborative
ML-based MDS based on SDN. The proposed MDS used
DL with GAN to jointly enable multiple distributed SDN
controllers to train the ML model for the entire network. The
authors trained their model based on the KDD99 dataset
and evaluated it using various metrics, including accuracy,
precision, recall, and Fl-score. Li et al. (2) [181] proposed an
ML-based MDS to detect multiple attacks, including false
information, DoS, and impersonation. They used a transfer
learning approach to transfer the knowledge acquired by
building ML models built based on a large amount of la-
beled data regarding well-known attacks to detect new ones
with a small amount of labeled data. The authors proposed
two transfer learning approaches for ML model updating.
The first is cloud-assisted, in which the cloud serves to label
the data, update the model and send it back to vehicles.
The second is the local update, in which vehicles use a pre-
trained model to label data and transfer learning to update
the model locally. In addition, the authors trained a multi-
class classifier on the AWID public data. Their experiments
showed how to exploit knowledge built from detecting
injection and impersonation attacks for detecting flooding
attacks. They also evaluated their MDS using accuracy, and
FN. Bangui et al. [182] proposed a hybrid approach to
detect multiple attacks. The MDS combines a binary multi-
classifier model to detect know attacks and unsupervised
learning to detect unknown attacks. The model was trained
based on the CICIDS2017 dataset using RF and a varia-
tion of Kmeans and evaluated using Fl-score and accuracy
metrics. Yang et al. (1) [183] proposed a multi-tiered hy-
brid intrusion detection system. The MDS uses multi-class
classification models to detect known attacks based on the
CICIDS2017 dataset and unsupervised anomaly detection
models to detect unknown attacks. The authors exploited
several algorithms to train the model, including DT, RF, ET,
XGBoost, and a stacking ensemble model. They also used
a Bayesian optimization with a tree Parzen estimator to
optimize the classification. Their anomaly-detection system
consists of cluster labeling, two biased classifiers, and a
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Bayesian optimization with a Gaussian process method for
unsupervised learner optimization. Moreover, they evalu-
ated their system using various metrics, including DR, FPR,
and Fl-score. Khan et al. [184] proposed an unsupervised
anomaly detection system to detect multiple attacks, such
as DoS, reconnaissance, exploits, fuzzes, and generic attacks,
consisting of two stages. The authors proposed two models
based on the standard state-based method for the first stage
and a Bidirectional LSTM-Based model for the second stage.
They trained their models based on UNSWNB15 datasets
and suggested deploying them on the CAVs’ gateways.
Finally, they evaluated their models using accuracy, recall,
precision, and Fl-score metrics. Liu et al. [185] combined
blockchain and FL to build collaborative FL-based MDS.
RSUs select FL workers from vehicles under their coverage
and exploit them to build local models. Then, each RSU
uses local models collected after each learning round to
train global models. In addition, the blockchain system,
which consists of RSUs, stores global models obtained after
running consensus processes to select the block’s miner.
The authors built a binary classifier based on the KDD-
Cup99 dataset to evaluate their system. Then they used
accuracy, precision, and recall metrics for evaluation. Rahal
et al. [186] proposed a supervised learning-based MDS to
detect DoS and eavesdropping attacks. The authors trained
a multi-class classifier based on a dataset generated using
NS3. They also used several ML algorithms to build this
classifier, including KNN, ANN, SVM, RF, DT, and NB.
In addition, they evaluated their system using precision,
recall, Fl-score, accuracy, FPR, and FNR metrics. Liu et
al. (1) [187] proposed an ML-based detection system to
detect DoS/DDoS and impersonation attacks. The authors
assumed a city partitioned into cells mapped to virtual ma-
chines equipped with ML-based MDSs. They built their ML-
based MDS based on a dataset generated using their private
testbed. In addition, they trained a binary classifier using
traditional algorithms such as NB and LR and evaluated
it using precision, recall, and Fl-score metrics. Zeng et al.
(2) [154] proposed an ML-based MDS to detect DDoS and
impersonation attacks. They built their model using ISCX
2012 IDS public dataset and trained several multi-class clas-
sifier models based on stacked DL architecture combining
CNN and LSTM. The authors also proposed a mechanism
to update the ML model. In addition, they evaluated their
models using precision, Fl-score, and recall metrics. Yang
et al. (2) [188] proposed an ML-based MDS to detect mul-
tiple attacks, including DDoS/DoS and impersonation. The
ML model is a multi-class classifier trained based on the
CIC-IDS2017 dataset. The authors used transfer learning to
build the model. They transferred learning parameters from
well-known CCN architectures, including VGG16, VGG19,
Xception, Inception, and Inception Resnet. Then, they em-
ployed a hyper-parameter optimality method and ensemble
learning to obtain the best results. The system was validated
using accuracy, precision, recall, and F1-score.

Table 8 summarizes the detected attacks of each pre-
viously described ML-based MDSs. These attacks include
impersonation, DoS/DDoS, false information, and eaves-
dropping. As can be seen, almost all works can detect
impersonation and DoS/DDoS attacks.



TABLE 8: Specification of attacks detected by multi-attack
ML-based MDSs for IP-based applications
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Alheet et al. (2) [173, 174]
Kim et al. [175]

Zhang et al. (2) [176, 177]
Ghaleb et al. [178]
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3.3 Both

This category only includes jamming attacks.

3.4 Jamming

Karagiannis et al. [189] proposed an unsupervised learning-
based MDS to distinguish between intentional interference
(jamming) and unintentional interference. The authors se-
lected several features for learning, including RSSI, PDR,
signal-to-noise and interference ratio, and relative speed
variation. In addition, they generated a dataset using the R
programming language, considering a scenario with inter-
ference and different types of radio jammers. In addition,
they used the k-means clustering algorithm for anomaly
detection and evaluated their system based on a specific
metric for identifying differences between interference and
jamming cases. Lyamin et al. [190] proposed an unsuper-
vised learning-based MDS for jamming attacks. The authors
considered two jamming attacks: (i) Random jamming: each
transmitted CAM is jammed independently with a proba-
bility p, and (ii) ON-OFF jamming: in which K subsequent
CAMs are destroyed with probability one only in the ON
state. They also generated their dataset using MATLAB sim-
ulations, considering radio inference on CAVs. In addition,
they combined their solution with their previous work [191]
to propose a hybrid method for enhancing the results. Fi-
nally, they evaluated their solution using the F1-score, TPR,
and TNR metrics. Abhishek and Gurusamy [192] proposed
an unsupervised learning-based MDS to detect jamming
attacks. They generated a dataset using the NS3 simulator
and selected two features for the training: PDrR and inverse
PDR. In addition, they used the one-class SVM algorithm
to build their model and evaluated it using the detection
probability as a metric. Kosmanos et al. [193] proposed an
ML-based MDS to detect jamming and GPS spoofing attacks
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in CACC. The authors generated their dataset using Veins,
considering information from both the application and the
physical layers to detect these attacks. They selected the
RSSI, the SINR, and the PDR as features from the physical
layer, the relative Speed (6u), and the GPS coordinates from
the application layer. They also used both supervised and
unsupervised learning to detect the attack. Specifically, they
exploited ensemble learning, combining SVM and RF for
supervised learning and OCSVM for unsupervised learning.
Finally, they evaluated their solution using the ROC curve
as a metric.

4 SUMMARY & DISCUSSION

This section provides summaries and discussions to get an
overview of ML-based MDSs for 5GB vehicular networks.
This section is divided into two parts: security and privacy-
oriented summary and ML-oriented summary. The security
and privacy-oriented summary mainly focuses on detected
attacks, the general design, and other different security-
related aspects. The ML-oriented summary mainly focuses
on the ML model used to detect the attack. It also analyzes
ML model characteristics such as the data sets, used ML
algorithms, and metrics.

4.1 Security and Privacy oriented summary

Table 9 lists the publication year and the attacks targeted by
ML-based MDSs for 5GB vehicular networks. As shown in
Figure 1, since 2014, these ML-based MDSs have witnessed
an increasing interest from the research community. This
is not only due to the topic’s importance and the con-
siderable ML advances done in recent years but also to
the emergence of interesting datasets such as VeReMi and
VeReMi extension. As depicted in Figure 10, the majority of
proposed ML-based MDSs are targeting Dos/DDoS attacks,
position falsification, and false information attacks. This
might be mainly due to the availability of the datasets.
However, the major issue here is that existing ML-based
MDSs do not consider attacks enabled by the integration
of vehicular networks with 5G described in subsection 2.2.4,
such as attacks on NS, handover, and roaming. This issue is
discussed further in section 6.

Tables 10, 12, and 11 show the security and privacy-
oriented summary for ML-based MDSs for Non-IP-based
V2X applications, for IP-based V2X applications, and for
both of them respectively. The following defines different
criteria used in this summary.

Platooning-dedicated: This column indicates
whether the ML-based MDS was dedicated to
vehicle platooning or not.

Type of the misbehavior: This column mentions
which type of misbehavior is detected by the ML-
based MDS. It can be an attack performed intention-
ally by a malicious node or an anomaly caused by a
malfunctioning node.

Unseen attacks (Yes/Maybe/No): This column indi-
cates whether the ML-based MDS can detect unseen
attacks or not.

Learning model: This column indicates whether the
model was built by a single node (Single) or multiple
nodes (Collaborative).



TABLE 9: Specification of attack(s) detected by each surveyed ML-based MDS

Year

Work

Position fal-
sification

in-

False
formation

Sybil

Position

tracking

Reply

Timing

Greyhole
/black-
hole

Jamming

Impersonation

Wormbhole

Eavesdropping

GPS

Spoofing

2010

Tian et al. [162]

>| Dos/DDoS

2011

Grover et al. (2) [135]

>

2011

Grover et al. (3)[136]

>

X[ X

X[ X

X[ X

2014

Liu et al. (1) [187]

x| X[ X

2015

Maglaras et al. [161]

2015

Sedjelmaci et al. [153]

X| X[ X

2015

Gruebler et al. [164]

2015

Lietal. (1) [137]

2015

Alheeti et al. (1) [165, 166]

2016

Abdel Wahab et al. [170]

X| X[ X[ X[ >

2016

Alheet et al. (2) [173, 174]

2017

Ghaleb et al. (2) [117]

2017

Kim et al. [175]

2017

Gu et al. (1) [130]

2017

Gu et al. (2) [131]

2018

Sarker et al. [128]

2018

Zhang et al. (1) [138]

2018

Nie et al. [163]

2018

Ayoob et al. [129]

2018

Zhang et al. (2) [176, 177]

2018

So et al. [100]

2018

Shams et al. [171]

2018

Zeng et al. (1) [167]

2018

Eziama et al. [139]

2018

Karagiannis et al. [189]

2018

Tan et al. [155]

2018

Monteuuis et al. [118]

2018

Lyamin et al. [190]

2018

Singh et al. (3) [157]

2018

Singh et al. (2) [119]

2018

Yu et al. [158]

2019

Boddupealli et al. (1) [125]

2019

Kosmanos et al. [193]

2019

Narayanadoss et al. [160]

2019

Siddiqui et al. [168]

2019

Mahmoudi et al. [140]

2019

Zeng et al. (2) [154]

2019

Kamel et al. (1) [132]

2019

Kamel et al. (2) [141]

X[ X[ X[ X

2019

Le et al. [101]

2019

Singh et al. (1) [102]

2019

Gyawali et al. [120, 121]

X[ X[ X[ X

2019

Singh et al. (4) [172]

2020

Ghaleb et al. [178]

2020

Quevedo et al. [133]

2020

Ashraf et al. [179]

2020

Sharma et al. (1) [103]

2020

Shu et al. [180]

2020

Negi et al. [122]

2020

Lietal. (2) [181]

2020

Kosmanos et al. [104]

2020

Bangui et al. [182]

2020

Montenegro et al. [105]

28




TABLE 9: Specification of attack(s) detected by each surveyed ML-based MDS - continued from previous page
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2021 | Almalki et al. [123] X
2021 | Yang et al. (1) [183] X X
2021 | Ecran et al. (1) [106] X
2021 | Ecran et al. (2) [107] X
2021 | Hawlader et al. [108] X
2021 | Okamura et al. [109] X
2021 | Grover et al. (1) [110] X
2021 | Sedar et al. [111] X
2021 | Uprety et al. [112] X
2021 | Boualouache et al. [134] X
2021 | Alladi et al. (1) [142] X X X X | X | X
2021 | Khan et al. [184] X X
2021 | Alladi et al. (2) [143] X X X X | X[ X
2021 | Liu et al. (2) [185] X X
2021 | Alladi et al. (3) [144] X X X X | X | X
2021 | Alladi et al. (4) [149] X X | X X | X | X
2021 | Kushardianto et al. [145] X X X X | X | X
2021 | Gongalves et al. [146, 147] X X
2021 | Sharshembiev et all [159] X
2021 | Acharya and Oluoch [169] X
2021 | Abhishek et Gurusamy [192] X
2021 | Sharma et al. (2) [113, 114] X
2021 | Mankodiya et al. [115] X
2021 | Hsu et al.[150] X X X X | X[ X
2021 | Mankodiya et al. [115] X
2021 | Ko et al. [124] X
2021 | Wang et al. [126] X
2021 | Boddupalli et al. (2) [127] X
2021 | Boddupalli et al. (3) [151] X X X X
2021 | Aliev et al. [116] X
2022 | Rahal et al. [186] X X
2022 | Liu et al. [152] X X | X
2022 | Yang et al. (2) [188] X X

o Learning mode: This column indicates the learning

mode depending on the learning model. If the model
was built by a single node, it can then be on a
single server or data center. But, if the model was
constructed collaboratively by multiple nodes, it can
then be done in federated or peer-to-peer learning.
Privacy preservation (Yes/No): This column indi-
cates if privacy preservation was ensured by the ML-
based MDS or not.

Context-aware (Yes/No): This column indicates if
the ML-based MDS takes into account the context
parameters to change the security parameters.
SDN-oriented: This column indicates whether the
ML-based MDS was built on top of an SDN archi-
tecture or not.

Secure (Yes/No): This column indicates if the ML-
based MDS is secured or not.
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Communication Overhead (Large/Low): This col-
umn indicates the ML-based MDS’s communication
overhead, which depends on the learning mode.
According to [194], centralized architectures gener-
ate significant communication overhead since they
collect all data in a single place. Similarly, distributed
data center architectures need row data exchanges
conducted among servers, causing considerable com-
munication overhead. In FL, communication over-
head is smaller than in other learning approaches
since communications are only required between
the central server and each client. In peer-to-peer
architectures, overhead is more significant than FL
because more signaling overheads are needed to
achieve synchronization among multiple clients

Validation (dataset/simulation): This column indi-
cates how the ML model was validated whether
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Fig. 10: The number of papers published on ML-based MDSs per attack

using datasets or through simulations.

From the analyzes of Tables 10, 12, and 11, it can be seen
most of ML-based MDSs for 5GB vehicular are general and
only a few ML-based MDSs are specific to vehicle platoon-
ing. It can also be seen that almost all the proposed ML-
based MDSs focus on detecting attacks instead of anomalies.
In addition, since most of the proposed ML-based MDSs are
supervised, most MDS focus on detecting specific attacks in-
stead of previously unseen attacks. However, unsupervised-
based MDSs try to detect attacks by detecting deviations
from normal behavior. Thus, it cannot be confirmed that
these ML-based MDSs can detect unseen attacks since the
authors only evaluated them on well-known attacks and
do not identify new attacks. For this reason, the column
"Unseen attacks" includes the value "maybe" as a value.
Moreover, in most works, the ML model was built based
on a single node. Only a few are based on collaborative
learning, and most of them leverage FL. This particular set
of MDSs is privacy-preserving, unlike the others. Context
awareness was also not considered in most works; only two
include this property. Furthermore, some ML-based MDSs
incorporate SDN in their design alongside SDN-enabled
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vehicular networks. However, these ML-based MDSs do
not consider detecting attacks and threats from this SDN
integration. Finally, it is worth noting that almost all the
existing works were validated using only datasets; only one
uses simulations and datasets to validate the ML model.

In summary, this survey points out that most ML-based
MDSs are generic rather than specific to a given application
(e.g., vehicle platooning) to secure, as many as possible,
5GB-V2X applications. In addition, ML-based MDSs aim
not only to detect attacks but also to identify them. How-
ever, existing ML-based MDSs for 5GB vehicular networks
have targeted detecting traditional attacks and have ignored
attacks resulting in 5G enabling technologies. In addition,
research communities focused less on detecting and identi-
fying unseen attacks. Besides, recent ML-based MDSs have
adopted an FL approach instead of a centralized approach
due to the benefits of FL on privacy-preserving. However,
securing ML-based MDSs and context awareness are less
addressed. Moreover, a few ML-based MDSs have consid-
ered support from 5GB enabling technologies like SDN
but ignored threats from these technologies, as previously
mentioned. Most of them also marginalized the deployment
of ML-based MDSs.



TABLE 10: Security and privacy-oriented summary of ML-based MDSs proposed for non-IP-based applications

Collab: Collaborative | DS: DataSet | SIM: Simulation
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So et al. [100] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Le et al. [101] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Singh et al. (1) [102] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Sharma et al. (1) [103] No | Attack No Single | Centralized | No | No | No | No | Large | Sim
Montenegro et al. [105] No | Attack No Single | Centralized | No | No | No | No | Large | Sim
Ecran et al. (1) [106] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Ecran et al. (2) [107] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Hawlader et al. [108] No | Attack No Single | Centralized | No | No | No | No | Large Slen
Okamura et al. [109] No | Attack Maybe | Single | Centralized | No | No | No | No | Large | DS
Grover et al. (1) [110] No | Attack Maybe | Single | Centralized | No | No | No | No | Large | DS
Sedar et al. [111] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Uprety et al. [112] No | Attack No Collab | Federated | Yes | No | No | No | Small | DS
Sharma et al. (2) [113, 114] | No | Attack No Single | Centralized | No | No | No | No | Large | DS
Mankodiya et al. [115] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Ghaleb et al. [117] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Monteuuis et al. [118] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Singh et al. (2) [119] No | Attack No Single | Centralized | No | No | No | No | Large | -
Gyawali et al. [120, 121] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Negi et al. [122] No | Anomaly | Maybe | Single giiiiﬂc)irtizr No | No | No | No | Large | DS
Almalki et al. [123] No | Attack No Single | Centralized | No | Yes | No | No | Large | DS
Gu et al. (1) [130] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Guet al. (2) [131] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Kamel et al. (1) [132] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Quevedo et al. [133] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Boualouache et al. [134] No | Attack No Collab | Federated Yes | No | No | No | Small gnsn
Grover et al. (2) [135] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Grover et al. (3) [136] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Li et al. (1) [137] No | Attack No Single | Centralized | No | Yes | No | No | Large | DS
Zhang et al. (1) [138] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Eziama et al. [139] No | Attack Maybe | Single | Centralized | No | No | No | No | Large | -
Mahmoudi et al. [140] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Kamel et al. (2) [141] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Alladi et al. (1) [142] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Alladi et al. (2) [143] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Alladi et al. (3) [144] No | Attack Maybe | Single | Centralized | No | No | No | No | Large | DS
Alladi et al. (4) [149] No | Attack Maybe | Single | Centralized | No | No | No | No | Large | DS
Kushardianto et al. [145] | No | Attack Maybe | Single | Centralized | No | No | No | No | Large | DS
Gongalves et al. [146, 147] | No | Attack Maybe | Single | Centralized | No | No | No | No | Large | DS
Hsu et al.[150] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Mankodiya et al. [115] No | Attack No Single | Centralized | No | No | No | No | Large | DS
Ko et al. [124] Yes | Attack No Single | Centralized | No | No | No | No | Large | DS
Boddupalli et al. (1) [125] | Yes | Attack No Single | Centralized | No | No | No | No | Large | DS
Wang et al. [126] Yes | Attack No Single | Centralized | No | No | No | No | Large | DS
Boddupealli et al.(2) [127] Yes | Attack No Single | Centralized | No | No | No | No | Large | DS
Boddupalli et al. (3) [151] | Yes | Attack No Single | Centralized | No | No | No | No | Large | DS
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TABLE 10: Security and privacy-oriented summary of ML-based MDSs proposed for non-IP-based applications — continued

from previous page

Collab: Collaborative | DS: DataSet | SIM: Simulation
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Sarker et al. [128] Yes | Attack | No Single | Centralized | No No No | No | Large | DS
Liu et al. [152] No Attack | No Single | Centralized | No No No | No | Large | DS
Sedjelmaci et al. [153] | No | Attack | No | Single | Centralized | No No | No | No | Large | Sim
Ayoob et al. [129] No | Attack | No | Single | Centralized | No No | No | No | Large | Sim
Aliev et al. [116] No Attack | No Single | Centralized | No No No | No | Large | DS

TABLE 11: Security and privacy-oriented summary of ML-based MDSs proposed for both IP-based

applications

Collab: Collaborative | DS: DataSet | SIM: Simulation

and non-IP-based
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Karagiannis et al. [189] No | Attack | Yes | Single | Centralized | No | No | No | No | Large | DS
Lyamin et al. [190] No | Attack | Yes | Single | Centralized | No | No | No | No | Large | DS
Abhishek et Gurusamy [192] | No | Attack | Yes | Single | Centralized | No | No | No | No | Large | DS
Kosmanos et al. [193] Yes | Attack | No | Single | Centralized | No | No | No | No | Large | DS

4.2 ML-Oriented summary

Tables 13, 14, and 15 show the ML-oriented summary for
MDS for Non-IP-based V2X applications, IP-based V2X
applications, and both of them respectively. The following
defines different criteria used in this summary.

o ML method: this column mentions the ML method
used to train the ML model including supervised,
unsupervised, hybrid (combines supervised and un-
supervised methods), and reinforcement learning.

« Dataset: This column specifies the dataset used to
train the ML model. The name of the dataset is
mentioned if it is publicly available. Otherwise, the
network simulator used to generate the dataset is
mentioned.

o ML Task: According to the used ML method, this
column indicates the type of ML task. For supervised
learning: the task can be regression, binary classifica-
tion, or multi-class classification. For unsupervised
learning: the task can be anomaly detection or clus-
tering. For reinforcement learning, the task can be
Markov Decision Process or Q-learning.

« Update model (Yes/No): This column indicates
whether the ML model will be updated over time
or not.

« ML Algorithm: this column mentions the ML algo-
rithms used to train the model and whether these
algorithms are traditional or based on DL.

o Metrics: this column indicates which are the metrics
used to evaluate the ML model.

o Inference loc: this column mentions the location
where the ML model is deployed after the validation
tests. This could be vehicles, edge nodes, RSUs, or
the Cloud.

From the analyzes of Tables 13, 14, and 15, it can be
seen that most of ML-based MDSs use a supervised ML
method. Also, only three ML-based MDSs use a hybrid ML
method combining unsupervised and supervised methods.
Thus, most ML tasks are classification tasks that use either
binary classifiers or binary classifiers. It can also be noticed
that unsupervised tasks are mostly anomaly detection tasks.

Regarding the used datasets, this survey concludes that
datasets used to build ML-based MDSs for non-IP-based
based V2X applications (Table 13) have been generated
using network simulators. In addition, the majority of au-
thors prefer to use public datasets (VeReMi and VeReMi
extension) than generating their own datasets. But, ML-
based MDSs for IP-based V2X applications have mostly
used public datasets generated using computer network
testbeds. On the other hand, most of the works built their
ML models using traditional ML algorithms. However, the
latest works have started to focus on more DL algorithms
and advanced concepts. It can also be seen that the used
evaluation metrics are different from one ML-based MDS
to another and mainly depend on the authors’ perspectives,
which are dependent on what to demonstrate. In addition,
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TABLE 12: Security and privacy-oriented summary of ML-based MDSs proposed for IP-based applications

Collab: Collaborative | DS: DataSet | SIM: Simulation
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Tan et al. [155] No | Attack | Maybe | Single | Centralized | No No | No | No | Large | DS
Singh et al. (3) [157] No | Attack | No Single | Centralized | No No | No | No | Large | DS
Yu et al. [158] No | Attack | No Single | Centralized | No No | No | No | Large | DS
Sharshembiev et al. [159] [158] | No Attack | Maybe | Single | Centralized | No No | No | No | Large | DS
Gruebler et al. [164] No Attack | No Single | Centralized | No No | No | No | Large | DS
Alheeti et al. (1) [165, 166] No Attack | No Single | Centralized | No No | No | No | Large | DS
Zeng et al. (1) [167] No | Attack | No Single | Centralized | No No | No | No | Large | DS
Siddiqui et al. [168] No | Attack | No Single | Centralized | No No | No | No | Large | DS
Acharya and Oluoch [169] No | Attack | No Single | Centralized | No No | No | No | Large | DS
Singh et al. (4) [172] No Attack | No Single | Centralized | No No | No | No | Large | DS
Alheet et al. (2) [173, 174] No | Attack | No Single | Centralized | No No | No | No | Large | DS
Kim et al. [175] No | Attack | No Single | Centralized | No No | Yes | No | Large | DS
Zhang et al. (2) [176, 177] No Attack | No Collab I;fsefcl;i{)o;fe?r (Yes) | No | No | No | Large | DS
Ghaleb et al. [178] No Attack | No Collab P.eer—.to—p €T | No No | No | No | Large | DS

distributed

Ashraf et al. [179] No | Attack | Maybe | Single | Centralized | No No | No | No | Large | DS
Shu et al. [180] No Attack | No Collab | Centralized | No No | Yes | No | Large | DS
Lietal. (2) [181] No | Attack | No Single | Centralized | No No | No | No | Large | DS
Bangui et al. [182] No | Attack | Yes Single | Centralized | No No | No | No | Large | DS
Yang et al. (1) [183] No Attack | Yes Single | Centralized | No No | No | No | Large | DS
Khan et al. [184] No | Attack | Yes Single | Centralized | No No | No | No | Large | DS
Liu et al. (2) [185] No | Attack | No Collab | Federated Yes No | No | Yes | Small | DS
Rahal et al. [186] No Attack | No Single | Centralized | No No | No | No | Large | DS
Abdel Wahab et al. [170] No | Attack | No Single | Centralized | No No | No | No | Large | DS
Narayanadoss et al. [160] No | Attack | No Single | Centralized | No No | Yes | No | Large | DS
Maglaras et al. [161] No | Attack | No Single | Centralized | No No | No | No | Large | Sim
Tian et al. [162] No Attack | No Single | Centralized | No No | No | No | Large | DS
Liu et al. (1) [187] No | Attack | No Single | Centralized | No No | No | No | Large | DS
Nie et al. [163] No | Attack | No Single | Centralized | No No | No | No | Large | DS
Zeng et al. (2) [154] No | Attack | No Single | Centralized | No No | No | No | Large | DS
Shams et al. [171] No | Attack | No Single | Centralized | No No | No | No | Large Slen
Yang et al. (2) [188] No Attack | No Single | Centralized | No No | No | No | Large | DS

in most ML-based MDSs the models were not updated after
their deployment. Only a few works explicitly mentioned
the update process, especially where the update of ML
models was done by design like in FL-based MDS. Finally,
the majority of works do not mention the inference location,
but those who mention were mostly CAVs.

In summary, traditional ML techniques are dominant in
the current ML-based MDSs for 5GB vehicular networks.
However, ML-based MDS’s development has followed the
advancement in the ML fields. As a result, recent ML-
based MDSs are based on advanced ML techniques such as
sophisticated DL architecture and advanced ML concepts.

In addition, the development of ML-based MDSs has also
followed the availability of datasets. Simulation tools have
generated new datasets to support the development of new
ML-based MDSs for non-IP V2X applications. However,
ML-based MDSs for IP-based applications still leverage
datasets generated from computer network testbeds. Finally,
we can see that the attention to updating mechanisms to
ML models is also weak, even though updating security
ML models is crucial to ensure the continuous detection of
threats.
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TABLE 13: ML-oriented summary of ML-based MDSs proposed for non-IP-based applications)

S: Supervised | U: Unsupervised | H: Hybrid | M-class: Multi-class | B-class: Binary-class | Reg: Regression | AD:
Anomaly Detection | Clust: Clustering | Pre: Precision | Recall: Rec | Acc: Accuracy | F1: Fl-score | Tra: Traditional |

Deep: Deep learning

£ o
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g ] <
= s g
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g 3 3
= o] %’
Work 2 | Dataset ML task = | ML Algorithms Metrics =
So et al. [100] S | VeRiMi M-class No | Tra (SVM, KNN) Pre, Rec -
Le et al. [101] S | VeRiMi M-class No | Tra (SVM, KNN) Pre, Rec -
Singh et al. (1) [102] S | VeRiMi B-class No | Tra (LR, SVM) F1 -
Tra (SVM, KNN, Acc. Pre
Sharma et al. (1) [103] S | VeRiMi M-class No | NB, RF, Ensemble, Rec, F1 ! -
boosting voting) !
. Tra FPR, TPR,
Kosmanos et al. [104] S | Generated (Veins) B-class No (KNN and RF) ROC curve |
Mont tal.[105] | S | Generated (Veins) | B-cl No | Tra (KNN) Acc,Rec, |
ontenegro et al. enerated (Veins class (o) ra FPR, TPR
Ecran et al. (1) [106] S | VeReMi B-class No | Tra (KNN, RF) I:Cec’ Il{:elc, -
. Tra(KNN, RF Pre, Rec,
Ecran et al. (2) [107] S | VeReMi M-class No , ensemble Learning Ace, F1 -
. B-class Tra (SVM, DT, Acc, Prec,
Hawlader et al. [108] S | VeReMi + M-class No RE, KNN, NB, and LR) | Rec, F1 -
Okamura et al. [109] U Generated - No | Tra (SST) Pre, Rec, Cloud
(Scenargy) Fl-score
Grover et al. (1) [110] U | VeReMi - No | Deep (GRU, LSTM) Acc, Rec Edge
Sedar et al. [111] S | VeReMi extension - No | Reinforcement learning E;:CIEEZ’ -
Uprety et al. [112] S | VeReMi B-class Yes | Deep (FL) Pre, Rec. -
Sharma et al. (2) . B-class Tra (KNN, RF, Pre, Rec,
[113, 114] S | VeReMi M-class | Y | NB, DT) Flscore. | Cloud
. . Tra (RF, KNN, Pre, Rec,
Mankodiya et al. [115] S | VeReMi B-class No AdaBoost) Fl-score. -
Generated Acc, F1,
Ghaleb et al. [117] S (NGSIM + Matlab) B-class No | Tra (ANN) Rec, Pre -
TPR, TNR,
Monteuuis et al. [118] S Cpllected B-class No Tra (ANN, FPR, FNR, | -
(internet) AdaBoost and RF)
Acc, F1
. Tra (ANN)
Singh et al. (2) [119] S | Generated (SUMO) | Reg No + Deep (LSTM) - -
. B-class
. VeReMi Tra (LR, KNN, Prec, Rec
Gyawali etal. [120, 121] | S + Generated (Veins) N DT, Bagging, RF) ,F1 cAv
M-class
. Generated
Negi et al. [122] U + Real dataset AD Yes | Deep (LSTM) AUC CAV
. Tra (LR, SVM) Acc, F1
Almalki et al. [123] S | NGSIM dataset B-class No Deep (LSTM) DR, FPR -
TPR, FPR,
Gu et al. (1) [130] S | Generated (SUMO) | B-class No | Tra (SVM, ANN) FNR -
Gu et al. (2) [131] S | Generated (SUMO) | B-class No | Tra (KNN) Acc -
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Work 2 | Dataset ML task = | ML Algorithms Metrics =
Kamel et al. (1) [132] S | VeReMi extensi M-cl No | Deep (LSTM) Ace, FL, ) CAV,
amel et al. eReMi extension -class 0 eep Rec, Pre Cloud
Quevedo et al. [133] S | Generated (SUMO) B-class No | Tra (ANN) Acc Edge
Becl Tra (LR, KNN, Pre. R
Boualouache et al. [134] S | Syntactic dataset class Yes | SVM, NB, DT, RF) €, Bec CAV
+ M-class , F1, Acc
Deep (FL)
Generated B-class Tra (NB,RF, DT, TPR, FPR,
Grover et al. (2) [135] S (NCTUns-5.0) +M-class No Adaboost, IBL) TNR, ENR | ~
Tra (RF, DT,
Generated L TPR, FPR,
Grover et al. (3) [136] S (NCTUns-5.0) B-class No | Adaboost, P;nsemble TNR, FNR |
based learning,IBL)
. Generated
Lietal. (1) [137] S (GloMoSim) B-class No | Tra (SVM) Pre, Rec -
Zhang et al. (1) [138] S | Generated (Veins) B-class No | Tra (SVM) TP, FP, Acc | CAV
. Tra
Eziama et al. [139] U |- AD No (Bayesian ANN) - -
Tra (RF, XGboost, Pre. Rec
Mahmoudi et al. [140] S | VeReMi extension M-class No | LGBM, ANN) F1 ! ! -
+ Deep (LSTM)
. . Tra (SVM, ANN) Rec, Prec,
Kamel et al. (2) [141] S | VeReMi extension B-class No + Deep (LSTM) F1, Acc -
. . . B-class Acc, Pre,
Alladi et al. (1) [142] S | VeReMi extension M-class No | Deep (LSTM, CNN) Rec, F1 -
. . Deep(RNN/LSTM Acc, Pre
Alladi et al. (2) [143] S | VeReMi M-class No CNN) Rec, F1 MEC
Alladi et al. (3) [144] U | VeReMi extension AD No | Deep(CNN-LSTM) ge piic’ RSU
. . . Pre, Rec,
Alladi et al. (4) [149] U | VeReMi extension AD No | Deep(CNN-LSTM) F1. Acc RSU
. . . B-class Tra (RF)
Kushardianto et al. [145] | S | VeReMi extension M-class No Deep(DL, GRU,LSTM) Acc -
.. (CAy,
Gongalves et al. Decision Stump RF Accuracy
[146, 147] S | Generated (NS3) [148] | M-class No MLP, 48, RF TPR, FPR RSU,
Cloud)
VeReMi Tra (SVM) Acc, Pre,
Hsu et al.[150] 5 | Extension Bclass | No | oo (CNN-LSTM) | Rec, F1 RSU
. . Tra (RF, DT, Pre, Rec,
Mankodiya et al. [115] S | VeReMi B-class No AdaBoost) F1 -
Ko et al. [124] S | Generated (PLEXE) B-class No | Deep (LSTM) gg:, Fl, CAV
Boddupealli et al. (1) [125] | U | Generated (RDS1000) | AD No | Tra (ANN) FR, FN -
Wang et al. [126] U | Generated (SUMO) AD No Deep (LSTM, F1 RSU
Autoencoder)
Boddupalli et al. (2) [127] | S | Generated (RDS1000) | R No | ra (RF . cAV
oddupalli et al. enerate eg 0 Regressor )
Boddupalli et al. (3) [151] | S | Generated (RDS1000) | Reg No | Tra (ANN) EfCFI;;e CAV
Public dataset Deep (ANN,
Sarker et al. [128] S + Generated (SUMO) Reg No RNN) Pre, Rec CAV
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. . Tra (KNN, DT, Acc, Pre,
Liu et al. [152] S | Generated (Veins) | B-class No Adaboost, RE, LR) | Rec, F1 -
Sedjelmaci et al. [153] | S | Generated (Ns3) B-class No | Tra (SVM) DR, FPR | CAV
Ayoob et al. [129] S | Generated (Ns2) B-class No | Tra (ANN) - CAV
. . Deep (multi-head
Aliev et al. [116] S | VeReMi M-class | No CNN-LSTM) Acc -

5 LESSONS LEARNED AND RECOMMENDATIONS

Interesting lessons and recommendations could be
concluded from the results and analyses presented in
the previous section. First, existing ML-based MDSs for
5GB vehicular networks only focus on detecting traditional
attacks and ignore threats for 5GB enabling technologies.
This survey recommends focusing on the detection of
attacks and threats related to 5GB enabling technologies and
non-5G domains. It also recommends further investigating
the detection of traditional attacks in the 5GB settings
since the scenarios can be more complicated. Second, the
datasets used to build ML-based MDSs for 5GB vehicular
networks are either generated using network simulators
in a non-5G setting for non-IP-based V2X applications
or obtained from classical network testbeds for IP-based
V2X applications. Even though these data are still for 5GB
vehicular networks, efforts should be made to generate
security datasets considering both the unique characteristics
of vehicular networks (e.g., mobility) and 5GB settings, as
discussed in subsection ??. Third, the proposed ML-based
MDSs strongly depend on the training dataset. Specifically,
the attacks detected by these MDS only cover the attacks
included in datasets, unlike what was described in the
titles and the abstracts of most research papers. These
latter give the impression that they are proposing solutions
that address all the attacks instead of specific attacks. This
survey strongly recommends authors be more specific
when presenting their ML-based MDSs. It also recommends
proposing holistic security frameworks integrating different
ML-based MDSs for 5GB vehicular networks to cover
various existing attacks, including unseen attacks. Fourth,
this survey concludes that the existing ML-based MDSs for
5GB vehicular networks are generally incomparable due to
the absence of benchmark security datasets and the unuse
of unified evaluation metrics. Indeed, an essential part of
research papers generates their datasets, making it difficult
to reproduce and compare their results with other solutions.
The rest of the research papers use public data sets such
as VeReMi and VeRemi extension. However, these datasets
are difficult to be appointed as benchmark datasets due
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to several data described in the open issues section (6.2).
To this end, this survey recommends gathering efforts for
defining unified benchmark datasets. It also recommends
specifying a common evaluation framework consisting of
all metrics used to evaluate and compare ML-based MDSs.
This survey encourages researchers to reproduce the results
of different ML-based MDSs and compare the results. This
task cannot be easy since the majority of authors did not
well explain the methodology and the parameters of the ML
models. Thus, this survey recommends researchers working
in this field to: (i) deepen their knowledge in ML, (ii) include
the required parameters to reproduce their results, and
(iii) make the implementation publically available. Fifth, as
stated in the ML-oriented summary, most ML-based MDSs
leverage conventional ML approaches to detect attacks.
However, while conventional ML approaches demonstrate
good performance in detecting some attacks, they have also
shown several limitations, such as (i) low performance in
detecting specific attacks, (ii) detecting attacks with small
datasets, and (iii) privacy preservation while detecting
attacks. These limitations demonstrate the need for more
sophisticated ML approaches to address them. For example,
DL approaches and architecture have been proposed to
enhance the performance results. FL comes to address
privacy preservation while building attack detection
models. Transfer learning addresses the problem of dataset
scarcity regarding specific types of attacks and enables
knowledge built on detecting attacks with large datasets
to detect attacks with small data. This survey recommends
investigating more sophisticated ML algorithms and
advanced concepts for building ML-based MDSs for 5GB
vehicular networks to address open issues such as detecting
zero-day attacks and autonomous attack detection. Here,
advanced concepts mean the concepts that have emerged
in the ML field which have not yet been applied in ML-
based MDSs for 5G vehicular networks. Sixth, most of the
proposed ML-based MDSs for 5GB vehicular networks
have not considered the inference location and the ML
model’s update, ignoring thus the deployment phase of ML-
based MDSs. Therefore, this survey recommends paying



TABLE 14: ML-oriented summary of ML-based MDSs proposed for IP-based applications

S: Supervised | U: Unsupervised | H: Hybrid | M-class: Multi-class | B-class: Binary-class | Reg: Regression | AD:

Anomaly Detection | Clust: Clustering | Pre: Precision | Recall: Rec | Acc: Accuracy | F1: Fl-score | Tra: Traditional |
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Tan et al. [155] U | Generated (Python) Clust No | Tra (AHC) DR ESA[\J/
Tra (LR, DT, NB, TP TN
Singh et al. (3) [157] S | Generated (Mininet-WiFi) | B-class No | SVM, KNN, ANN ¢ SDN
. . FP, FN
Gradient boosting)
DARPA
Yu et al. [158] S CAIDA DDos2007 B-class No | Tra (SVM) DR -
Tra Pre
Sharshembiev et al. [159] U | Generated (Veins) AD No Rec -
(Entropy-based) F1
Generated TP, TN
Gruebler et al. [164] S (NS2 and SUMO) B-class No | Tra (ANN) FP. EN -
. Generated Tra Acc, TP,
Alheeti et al. (1) [165, 166] | S (NS2 and SUMO) B-class No (SVM, ANN) TN, EN, FP -
Generated Tra CAV
Zeng et al. (1) [167] S (GloMoSim) B-class No (ANN, SVM) Acc RSU
s Tra
Siddiqui et al. [168] H | CRAWDAD B-class No (KNN, SVM) Acc -
Tra (NB, LR, KNN, ?fC'APreC'
Acharya and Oluoch [169] | S | Generated (NS3) B-class | No | SVM, D FISIC’ 3
Gradient boosting) ROC_AUC
. Tra TP, TN
Singh et al. (4) [172] S | Generated (SUMO) B-class No (KNN, SVM) FP. EN -
Tra TP, TN
Alheet et al. (2) [173,174] | S | Kyoto M-class | No (ANN) FP. EN -
. Acc, Pre
Kim et al. [175] S | KDD CUP 1999 M-class | No | Tra (SVM) Rec CAV
Zhang et al. (2) [176, 177] S | NSL-KDD B-class Yes | Tra (LR) Loss CAV
Acc, Pre, FP
Ghaleb et al. [178] S | NSL-KDD Bclass | Yes | a (REXGBoost | g ore, N | CAV
SVM) DR
Ashraf et al. [179] U | UNSW-NB15 AD No | Deep (LSTM) zrci I;‘ic TPR | cav
Shu et al. [180] S | KDD99 B-class | No | Deep (GAN) I‘iecs glre Cloud
. Tra (SVM +RF) Acc, FPR
Lietal. (2) [181] S | AWID M-class | Yes Transfer learning FNR CAV
Bangui et al. [182] H | CICIDS2017 Xglass No | Tra (RF based) Acc, F1 -
Acc, F1
M-class Tra (DT, REET, e
Yang et al. (1) [183] H | CICIDS2017 AD No XGBoost, stacking) DR, CAV
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TABLE 14: ML-oriented summary of ML-based MDSs proposed for IP-based applications — continued from previous page

S: Supervised | U: Unsupervised | H: Hybrid | M-class: Multi-class | B-class: Binary-class | Reg: Regression | AD:
Anomaly Detection | Clust: Clustering | Pre: Precision | Recall: Rec | Acc: Accuracy | F1: Fl-score | Tra: Traditional |
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Deep Acc, Rec,
Khan et al. [184] U | UNSWNB15 AD No (LSTM) Pre, F1 CAV
. DL Acc, Pre
Liu et al. (2) [185] S | KDDCup99 B-class Yes FL Rec -
Tra Acc, Pre
Rahal et al. [186] S | Generated (NS3) M-class | No | (KNN, ANN, SVM Rec, F1 Vehicle
RF, DT, NB) ’
Generated Acc, DR
Abdel Wahab et al. [170] | S (VanetMobiSim) B-class No | Tra (SVM) EPR CAV
Generated Tra (ANN) Acc, Pre, | SDN
Narayanadoss et al- [160] | S|\ i iner-wiFi) B-class | No Deep (CNN, LSTM) | Rec, F1 | Controller
Generated Tra (K-OCSVM CAV
Maglaras et al. [161] U | (private Simulator) | P No | kNN+OCSYMY) | A RSU
Tian et al. [162] U g\]eg;)r ated AD No | Tra (ANN) FP, FN Backbone
. Generated Pre, Rec,
Liu et al. (1) [187] S (Testbed) B-class No | Tra (NB, LR) F1 Backbone
. Generated
Nie et al. [163] U (Testbed) AD No | Deep (CNN) TPR -
ISCX 2012 IDS Pre, Rec,
Zeng et al. (2) [154] S + Generated (Ns3) M-class | Yes | Deep (CNN+LSTM) Fl-score |
Generated Pre, Rec,
Shams et al. [171] S (Ns2) B-class No | Tra (SVM) F1 CAV
Deep (ensemble Acc. Pre
Yang et al. (2) [188] S | CIC-IDS 2017 M-class | No | learning, CCN), R
. Rec, F1
Transfer learning

TABLE 15: ML-oriented summary of ML-based MDSs proposed for both IP-based and non-IP-based applications

S: Supervised | U: Unsupervised | H: Hybrid | M-class: Multi-class | B-class: Binary-class | Reg: Regression | AD:
Anomaly Detection | Clust: Clustering | Pre: Precision | Recall: Rec | Acc: Accuracy | F1: Fl-score | Tra: Traditional |
Deep: Deep learning
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. Generated Tra
Karagiannis et al. [189] U (R) AD No (K-means) - -
. Generated Tra (Statistical
Lyamin et al. [190] U (MATLAB)) AD No Data mining) F1 CAV
. Tra
Abhishek and Gurusamy [192] | U | Generated (NS3) | AD No (One-class SVM) DR CAV
Tra (SVM, RF
Kosmanos et al. [193] [Sj g/eerilszz)ated i—]cjl ass No | Ensemble learning, | ROC curve | -
OCSVM)
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careful attention to the deployment phase, which has an
important impact on the detection rate and the feasibility
of the ML-based MDS. In addition, evaluation should
include new indirect metrics to study ML-based MDSs
deployments, such as the size of the ML model and the
inference time (time to detect the attack). It is also important
to carefully examine inference location from the detection
and security and privacy perspectives. On the other hand,
model update mechanisms should be defined to prevent
loss of accuracy with time. In this direction, collaborative
MDS offers interesting opportunities to update the ML
model and provide privacy preservation smoothly. For this
reason, this survey recommends promoting research in this
direction by exploring more advanced ML concepts such
as online learning and reinforcement learning. Seventh,
ML-based MDSs, including collaborative ones, still face
various security threats, such as adversarial attacks and
poisoning. The analysis in this survey identifies only one
work that considers the security of the ML-based MDS.
To this end, the authors of this survey believe that the
security of ML-based MDSs is an urgent issue that requires
concerted efforts.

Key highlights from the lessons learned

Current ML-based MDSs for 5GB vehicular net-
works focus on detecting traditional attacks and
ignore attacks from 5GB enabling technologies.
There is a lack of security datasets for 5GB vehicular
networks, which consider unique characteristics of
vehicular networks (e.g., mobility).

Titles and abstracts of most papers on ML-based
MDSs for 5GB vehicular networks do not precisely
mention detected attacks, which depend on the used
datasets.

Current ML-based MDSs for 5GB vehicular net-
works are generally incomparable due to the ab-
sence of benchmark datasets and the unuse of uni-
fied evaluation metrics.

Most solutions leverage traditional ML approaches
to detect attacks. Some solutions have exploited ad-
vanced ML techniques to overcome the limitations
of conventional ML approaches.

Most ML-based MDSs for 5GB vehicular networks
do not consider the inference location and the ML
model’s update, ignoring thus solutions’ deploy-
ment.

Most ML-based MDSs for 5GB vehicular networks
face various security threats such as adversarial
attacks and poisoning.

1)

2)

3)

6)

6 OPEN RESEARCH ISSUES

Several parameters involve in building effective ML-based
MDSs for 5GB vehicular networks, such as the quality of
datasets and the used ML algorithms. However, although
considerable efforts have been made, several open issues
still need more attention to achieve the aimed ML-based
MDS. These issues, illustrated in Figure 11, are discussed
in this section. This section also discusses some potential
solutions to address these issues.
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Fig. 11: Open issues of ML-based MDSs for 5GB vehicular
networks

6.1

Empowering CAVs with 5GB technologies has brought
many opportunities but, at the same time, opened up new
vulnerabilities and surfaces of attacks to CAVs. While tra-
ditional attacks have been widely covered, attacks posed
by 5G enabling technologies have been less considered [65].
The survey authors believe ML could also be a key enabler
to effectively detect attacks from both 5GB and non-5GB
domains. For example:

Attacks from 5GB technologies

o ML-based MDSs could early and efficiently detect
attacks on V2X network slices. Attacks on NS could
be: (i) intra-slice: in which the attacker(s) and the
target(s) belong to the same V2X network slice, or
(ii) inter-slice attacks in which the attacker(s) and the
target(s) belong to different V2X network slices. ML-
based MDSs could be efficient in detecting both of
these attack types. In addition, the FL concept could
help detect attacks while preserving the isolation of
V2X network slices.

Mobility management for CAVs in 5G is challenging.
CAVs are characterized by high mobility, perform-
ing frequent horizontal and vertical handovers [195].
Handovers may create a performance constraint for
CAVs, especially road safety applications. Specifi-
cally, if the loss of the network connection impedes
real-time decision-making, the consequences could
be disastrous. Context-aware mobility management
solutions have been proposed to deal with this. These
solutions leverage predictive ML models taking con-
text information of CAVs as input to proactively pre-
pare handovers so that the network connection can
be seamlessly transitioned while meeting the delay
requirements [196]. Moreover, CAVs in 5G need fre-



quent mutual authentications along with handovers
to prevent external attacks such as impersonation
and man-in-the-middle [69]. However, while current
authentication schemes are efficient in preventing
these attacks, they generally come at the expense
of high computation costs and long handover de-
lays [197, 198]. Using lightweight cryptographic-
based [199] and secure context information-based
authentication [200] schemes seems promising to re-
duce delays, but they will also reduce the security
and privacy levels.

To this end, ML-based MDSs come to complement
authentication schemes to secure mobility manage-
ment by proactively detecting attacks conducted dur-
ing handover and roaming processes and protect-
ing context information shared during these pro-
cesses [201]. Specifically, the use of ML-based MDSs
is crucial, especially in the case existing malicious
actors can launch cyberattacks by taking advantage
of handover and roaming characteristics, such as
different security configurations and needs at dif-
ferent MNOs. Here collaborative ML architecture
could be more appropriate to support the mobility
of CAVs while detecting attacks. ML-based MDSs
can be deployed at access points (gNodeB) and MEC
stations, usually used to manage context information
for predicting handovers. These ML-based MDSs
can collaborate and coordinate to detect attacks on
handovers. However, detecting attacks on roaming
scenarios could be more complicated since home
and visited MNOs are non-cooperative in sharing
information regarding their networks. Thus, the chal-
lenge is how MNOs can collaborate to detect attacks
in roaming while preserving their private data. FL
could be a good candidate to use here to enable
privacy-preserving collaboration in building global
attack detection models. Specifically, each MNO can
train local models based on their data and contribute
to building a global model for detecting roaming
attacks without sharing data.

ML-based MDSs could detect attacks coming from
non-5G domains. On the one hand, ML-based MDSs
built for 5GB vehicular networks are still relevant for
non-5G vehicular domains such as ITS-G5 since both
5G and non-5G vehicular domains share the same
vectors of traditional attacks. However, the focus
should be put on detecting attacks that might happen
to CAVs during the vertical handovers between the
two vehicular domains. On the other hand, for other
non-5G domains, cellular (i.e., LTE) or not cellular
such as satellite or WiFi, detecting these attacks
should be ensured by the 5GB network core, which
acts as a broker between these domains and 5GB
vehicular networks. Thus, ML-based MDSs could
be built and deployed on the 5GB network core
to protect CAVs from attacks coming from non-5G
domains [202].

Besides, traditional security and privacy attacks still
need further attention in the 5GB domain. For example,
trajectory tracking can be done by collecting and linking
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CAMs messages broadcast by CAVs. Using pseudonyms can
help to some extent to protect against these attacks [203].
However, identifiers used by CAVs in the 5GB environment
can provide assets for attackers to link the CAMs. A first
work demonstrated that ML-MDSs could help in detecting
passive adversaries [134].

6.2 Data sets for 5GB vehicular networks: collection,
benchmarking, and reproducibility

As already discussed in the learned lessons section, the
absence of benchmark security datasets for 5GB vehicular
networks is a major open issue in reproducing results of
existing ML-based MDSs and comparing them. All datasets
used by current ML-based MDSs for 5GB vehicular net-
works have not been generated using cellular testbeds or
cellular simulations. It is hard to find real-world cellular
security datasets because telco companies prefer to keep
their data (especially data on security) confidential to avoid
hurting their business and reputation. However, all datasets
listed in Table 5 are still relevant to the 5GB vehicular
context. This is because: (i) 5GB vehicular networks share
the same protocols with non-cellular networks in several
protocol stack layers such as IP, TCP/UDP, and HTTP. Thus,
attacks on these protocols are not only valid in non-cellular
networks but also in cellular network domains like 5GB
vehicular networks, and (ii) Attacks on V2X applications are
independent of the underlying protocol stack, whether non-
cellular (e.g., ITS-G5) or cellular (5G-V2X). In other words,
attack datasets on V2X applications generated in a non-
cellular setting are still relevant for 5GB vehicular networks.
However, existing datasets still miss attacks on telco-specific
protocols such as GPRS Tunneling Protocol (GTP), NG Ap-
plication Protocol (NGAP), and Stream Control Transmis-
sion Protocol (SCTP), which can only be generated using a
cellular testbed. Some lab testbeds have recently been set up
in this direction to generate such data [204, 205]. However,
these testbeds concern only the 5G network core part, and
their produced datasets are not publically available. To this
end, generating security datasets for vehicular networks in a
5GB setting is still an issue. 5GB vehicular network security
datasets should consider the core network, but most impor-
tantly, the mobility of CAVs and 5GB enabling technologies,
including mobility management procedures such as han-
dover and roaming. Moreover, the authors of this survey
believe that it is difficult to appoint benchmark datasets
without standardized procedures that clearly define V2X
attack scenarios. They believe efforts should be gathered
to define clear and standardized V2X attack scenarios to
generate unified benchmark datasets using realistic 5GB
vehicular testbeds.

Besides, a common evaluation framework consisting of
all metrics used to evaluate and compare ML-based MDSs
should also be specified. In addition, the reproducibility
of results is another issue since authors tend to neither
mention ML parameters nor make their source codes public
as discussed in section 5. For this reason, this survey encour-
ages authors to adopt a result reproducibility methodology.
It also encourages researchers to reproduce the results of
different ML-based MDSs and compare the results.



6.3 Zero-day attacks and autonomous detection

Zero-day attacks are vectors of unseen attacks that appear
over time due to the evolution of technologies (i.e., network
slicing [206]) and attacker strategies [207]. 5GB vehicular
networks are highly vulnerable to zero days attacks since
CAVs are under the control of their users, which can then
modify software and hardware to generate attacks. Most ex-
isting ML-based MDSs were built on a supervised approach,
allowing the detection of known attacks listed in the used
datasets. In addition, the rest of the ML-based MDSs use
unsupervised models based only on normal data. Thus, they
can detect anomalies but cannot identify them. We believe
that investigating recent ML advances could help detect
zero-day attacks. For example, N-shot learning has shown
promising results for identifying unseen classes of images
in vision applications [208]. This could be a motivation to
use them for detecting zero-day attacks. In addition, new
emerging hybrid semi-automatic frameworks, including hu-
mans in the detection loop, are promising [209]. The system
leverage ML to detect anomalies and the security operations
center for identifying zero-day attacks and updating the ML
system. However, the ultimate goal is to detect attacks on
5GB vehicular networks automatically since there is cur-
rently no such approach that enables autonomous detection
in different contexts for CAVs under the umbrella of the
zero-touch paradigm [210].

6.4 Context-awareness and Collective perception

Due to their high mobility, 5GB vehicular networks are ex-
posed more than other applications to the context-changing.
Almost all the existing ML-based MDSs for 5GB vehicular
networks leverage the direct parameters to detect attacks
while ignoring indirect parameters, which also influence
attack detection accuracy. For example, detecting message
greyhole/blackhole attacks requires monitoring message
exchanges between CAVs. However, the messages could be
suppressed intentionally due to environmental characteris-
tics such as obstacles and interference. Thus, other indirect
parameters such as channel status, temperature, and speed
should also be considered to detect such behavior. Although
two ML-based MDSs [123, 137] consider the context, their
contributions are still limited since indirect parameters are
not included in the ML training. In this vein, Besides, SDN
approaches to change security parameters according to the
context are interesting to investigate [180, 211].

On the other hand, for V2V communications, existing
ML-MDSs have mainly focused on detecting misbehavior
in periodic messages, i.e., CAM, and even-trigger messages,
i.e., DEMN. However, less attention has been paid to secure
CPM messages generated by collection perception services.
As aforementioned, this service is very important for CAVs
to detect non-V2X objects such as legacy vehicles, pedestri-
ans, and animals and to extend vehicle perception through
a fusion process with CAM and DENM messages. Thus,
attacking CPMs can have catastrophic results on road safety.
To this end, developing MDSs to detect misbehaviors has
become a must. Ansari et al. have recently conducted a
threat assessment on CPS use cases defined by ETSI [36, 37].
In addition, a few non-ML-based MDSs have been proposed
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to detect CPM misbehaviors [212-216]. However, more ef-
forts still have to be performed in this direction, and ML is
one promising technique to improve detection capabilities.
Indeed, ML algorithms have proven this efficiency in sensor
data carried out by CPM messages. For example, CNNs are
mainly designed for visual and imagery applications.

6.5 Security and Privacy

As discussed in the analysis section, most existing ML-based
MDSs of 5GB vehicular networks are centralized, where
the datasets are collected, and the ML model is trained
in one location. This exposes them to serious security and
privacy issues for the following reasons: (i) these solutions
are suffering from single-point-of-failure attacks since the
model is trained on a single location; and (ii) collecting
datasets by one entity could have several privacy violations
since datasets may contain sensitive information about the
behavior and movement patterns of V2X nodes. Collab-
orative FL-based MDSs [112, 134, 185] came to partially
address privacy issues since datasets in these systems are
shared among learning nodes instead of centrally stored.
However, security issues are multiplied by the number of
components in collaborative systems. In addition, FL-based
MDSs are still suffering from single-point-of-failure attacks
since the global model is aggregated and calculated in one
FL server. To this end, the authors of this survey believe that
blockchain could be an efficient technology to secure ML-
based MDSs [185]. However, some problems still need to be
addressed in the blockchain design to achieve this aim, such
as the consensus algorithms and optimizing smart contracts.
Besides, like other ML-based systems, ML-based MDSs
are also suffering from adversarial ML [217, 218]. Adver-
sarial ML is a set of techniques that try to exploit models
by using the information obtained from models to launch
advanced attacks. For example, learning nodes still send
small updates to the FL server even if the datasets are not
shared in FL. An attacker can use this information to infer
sensitive information about the model and thereby launch
attacks to poison the model [219]. Although recent work has
addressed the adversarial ML attacks issue [220], the survey
authors believe this issue still needs careful attention.

6.6 Deployment and Incentives

Building a successful ML-based MDS for 5GB vehicular net-
works depends on not only the development and validation
phases but also the deployment phase. In addition to the
datasets and the model accuracy, ML-based MDSs should
be developed to fit the V2X environment (software and
hardware) in which these systems will be deployed. The
deployment of ML-MDSs in 5GB vehicular networks differs
from other applications due to many factors such as mo-
bility, equipment heterogeneity, and hardware performance.
Therefore, ML-based MDSs should be developed with the
end in mind considering metrics such as the model’s size
and processing resources required to run the models in the
evaluation part. Besides, the placement of ML-based MDS
components on 5GB vehicular networks should be studied
to provide early attack detection and a rapid reaction while
protecting them from vulnerabilities. The authors of this



survey believe that deploying ML-based MDSs in 5GB ve-
hicular networks is an open issue that requires efforts from
both research and industry. Besides, since the deployment
of ML-based MDSs in V2X nodes will consume storage and
processing resources, the manager of these nodes might be
against deploying ML-based MDSs. Thus, the incentive is-
sue should also be addressed to ensure the continuity of ML-
based MDS services. Some works have started interesting
in incentive modeling using game theory frameworks [221].
However, the authors of this survey believe more efforts can
still be made in this direction.

6.7 Standardization

The first efforts on standardization of MDSs for vehicu-
lar networks are ongoing. ETSI has recently published a
technical report on the pre-standardization study of V2X
misbehavior detection [16] and is currently working on
the technical specification [17]. Although several detection
techniques are mentioned in this report, the role of ML is
not well emphasized. The authors of this survey believe
standardization bodies should focus more on defining a
toolbox for developing and validating ML-based MDSs
for 5GB vehicular networks. Consequently, this survey can
identify several standardization opportunities: 1) defining
attack scenarios in complementary with the ETSI technical
report 102 893 [222]; (2) defining benchmark datasets; (4)
defining validation KPIs; (5) specifying evaluation metrics;
and (6) establish clear validation procedures. On the other
hand, standardization bodies should organize plug-tests
events (e.g. [223]) that gather several stakeholders for testing
and validating ML-based MDSs with reporting relevant
results, as is the case [224-226].

7 CONCLUSION

Misbehavior Detection Systems are key building blocks
for securing 5GB vehicular networks. Machine Learning is
an indispensable tool of the design of these systems. An
increasing effort is ongoing to provide effective ML-based
MDSs. This paper surveyed and classified relevant ML-
based MDSs for 5GB vehicular networks. It also analyzed
and discussed them from security and ML perspectives.
Finally, It gave some learned lessons and shed light on open
research and standardization issues for building effective
ML-based MDSs.

This survey showed that ML-based MDSs for 5GB ve-
hicular networks are still in their first stage of development.
Much effort is still being made in this research area. The
results of this survey can be used to build a roadmap for
the research community to accelerate the development of
ML-based MDSs for 5GB vehicular networks. The starting
step could be to enlarge knowledge of attacks against CAVs
in the 5GB environment and their potential scenarios. This
step is essential for building realistic testbeds to generate
reliable attack datasets, serving as benchmarks to validate
and compare results.

Following trends in ML fields and employing state-of-
art ML algorithms and concepts is also essential to enhance
attack detection results, detect unseen attacks, update ML
models, and provide early detection. For example, N-shot
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learning could detect and identify unseen classes of zero-
day attacks. Online learning and deep reinforcement learn-
ing could help to build context-aware ML-based MDSs for
5GB vehicular networks that can be self-adapted to different
contexts. Moreover, multiple ML models can be combined
inside the same ML-based MDS, which switches between
them according to triggering contexts. Besides, it is also
promising to investigate semi-automatic ML systems that
involve humans in the loop to detect unseen attacks. These
systems use ML to detect anomalies and security analysts to
identify attacks and update the ML models.

The next step is to study the deployment of ML-based
MDSs carefully, considering different performance metrics,
the security of ML models, and incentive aspects to ensure
sustainability. ML Operations (MLOps) is a key enable in
this stage. ML Operations (MLOps) approach is a key enable
in this stage. MLOps is a developing field with principles
and tools to help with the ML project lifecycle, especially
data processing, model building, and deployment. MLOps
can address both ML and software engineering issues in
deploying ML-based MDSs. ML issues mainly include data
and concept drifts. "Data drift" happens when data distribu-
tion changes after the deployment. "Concept drift" happens
when the mapping between the input and output of the ML
models changes. For example, high network traffic gener-
ated by CAVs should have been detected as anomalies using
ITS-G5. After 5G-V2X, the same network traffic should not
cause an anomaly with the high bandwidth offered by
the 5G technologies. Thus, MLOps can detect and manage
changes and adapt the ML-based MDS to avoid these issues.

On the other hand, MLOps can help tackle software
engineering issues. According to detected attacks, MLOps
can help decide whether ML-based MDSs deployed to make
real-time or batch detection and what is the best place to
deploy ML-based MDS (e.g., CAVs, MEC, and/or core). In
addition, MLOps tools allow monitoring of how much ML-
based MDSs consume processing and memory resources.
Other real-time software engineering metrics, such as la-
tency and throughput, can also be monitored. Moreover,
MLOps provides services to log data for analysis and review
and to provide more data for retraining ML-based MDSs.
Finally, regarding security and privacy, MLOps can help to
customize an appropriate level of security and privacy on
ML-based MDSs based on data sensitivity and regulatory
requirements.

Finally, condensing standardization activities will help to
accelerate the adoption of ML-based MDSs by the industry.
More specifically, the definition of an ML methodology for
detecting misbehaviors on top of the plausibility checks
specified by current standards is required. In addition,
standardization bodies should further focus on detecting
misbehaviors in cooperative perception services. Defining
standard specifications will enable the creation of new busi-
ness opportunities in ML-based MDSs for 5GB vehicular
networks.
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